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Abstract. The complete list of Poisson-Lie structures on Poi@cand Euclidean groups in
three dimensions is presented. Some new solutions for inhomogémys ¢) are given.

1. Introduction

The problem of classification of Poisson-Lie structures on inhomoge$ioyg, ¢) groups

(i.e. the semidirect product &fO (p, g) and R?*4, where the action is given by fundamental
representation) is not yet solved in general. It was investigated in [1] where it was shown
that all Poisson—Lie structures on these groups ffer ¢ > 2) are coboundary. Also a
number of solutions were presented, especially for inhomogeSau4, 3) but even for

this group it is not known whether other solutions exist. If we think of Poisson—Lie groups
as ‘classical limits’ of quantum groups, it is reasonable, as a first step to find quantum
deformations, to study the possible Poisson—Lie structures on a given group and then select
those which can be ‘quantized’ on th&*-algebra level [4]. In this paper we give the
complete list of bialgebra structures on inhomogenoaS) and so(1, 2) algebras. The
structures were found ‘by force’ so the paper is rather technical. Nevertheless we were
able to find a new solution for any dimension. These solutions come from the general
construction which will be described elsewhere [5] and are presented in the remarks within
section 3.

2. Basic definitions and notation

Let (V, n) be a three-dimensional, real vector space with symmetric, nondegenerate, bilinear
form 5. In fact, we have two situations: either the signature & (3, 0)—this corresponds
to the Euclidean group or the signaturéis2)—this corresponds to the PoinéaBroup. By
n we also denote isomorphisii >~ V* given by: n,(y) := n(x, y). A’ is the transposition
defined byn : n(Ax,y) =: n(x, A'y). Let H := SO(n) be the special orthogonal group
andh := so(n) its Lie algebra. H acts onV by fundamental representation. L&étbe a
semidirect product defined by this action amits Lie algebra.

We use the following natural isomorphisms intertwining with the corresponding
representations oH. Q: VAV — b @, = Qx Ay = x®n() —yQnkx).
For any orthonormal basi@s, 2, e3) we denote:ky := Qg e50 k2 := Qege1s k3 1= Qe;.ep-

t E-mail address: stachura@fuw.edu.pl

0305-4470/98/194555+10$19.5@C) 1998 IOP Publishing Ltd 4555



4556 P Stachura

Note thatQ viewed as an element g\’ V)* ® h ~ A’V @ h c A3g is G-invariant [1].
In any basis:

Q=n"n""e; ner @ Qi
T VAV > VingrxAy)(z)=Vol(x AyAz)

where Vol is volume form onV determined (up to a sign) by. In any orthonormal,
oriented baSiST[(E,‘ AN €j) = Ekeijkn,‘,-njjek.
These two isomorphisms provide us with further identifications:

VRh~VVVV*~EndV),e ®k; = nuinzanse @ e.
2
AV®h=VRh~EndV). e Ae; @k > Sieijnmer @'

2 2
Ve ANb=Ve A\V=Veh~EndV). ek Ak — Sieumume ® .

For any orthonormal basigs, e, e3) we denote:e_ := Jii(el — ), eq = %2(61 + 7).

H acts on En@V) by conjugation and results in the decomposition into irreducible
subspaces:

EndV) = Wo® W1 © W 1)
where: Wo :={Aidy : A € R}, Wy =8, Wo:={a € End(V) : @' = a and Tia) = 0}.

It is known that Poisson-Lie structures @h are coboundary [1], i.e. are given by
some element € /\29 satisfying equationr r] € (/\3 @)inv (Where F, r] is the Schouten
bracket).

Note the following lemma.

Lemma 1.(/\3 ®)inv IS two-dimensional and is spanned by elemerfise /\2 V ® h and
ﬁ =e1NexNe3 € /\3V.

Proof.

3 3 2 2 3
/\gz(/\v)ea(/\V®b>ea(V®/\h>@(/\h>. @)
This decomposition igZ-invariant and we have the followingf -invariant subspaces:
A3 V—this is one dimensionati-invariant subspace;

/\2 Vebh~EndV) = W,® W, & W,—so the onlyH-invariants elements are in the
image of Wy and this is subspace spanned®y

2
Ve \b~EndV)=Wod W@ W,
so as above the onlif-invariants elements are in the image Wj§.

/\3 h—this is a one-dimensiondl -invariant subspace
One can check that only the first two subspacesiaiavariant. O

Letr = a + b + ¢ be a decomposition corresponding to:

2 2 2

/\gz(/\v)@<V®b)@</\b) ®)
then |, r] = 2[a, b] + (2[a, c] +[b, b]) + 2[b, c] +[c, c] is the decomposition corresponding
to (2). From the lemma above it follows that we have to solve equations:

la, b] = p7 2[a, c] +[b,b] = us2 psHER (4)

[b,c] =0 [c,c] =0. (5)
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3. Results

The main results of this paper are shown in the following complete list of solutions (up to
automorphisms of) of equations (4) and (5) foP(3) and E(3).

3.1. Poisson structures on P(3)

(I)c:\%(lq%—kz)/\kg,b:a(el/\kl—i—ez/\kz—i—eg/\kg),a=0
a:O,l,p.:Zaz,pzo.

In the remaining cases= 0.
(||a)b=,0€3/\k3+0((€2/\k1+61Ak2),aE/\ZV
,020,0{:0,1,052+p27é0,u=—2a2,peR.
(||b)b=,O€1/\k1+0[(€3/\k2—€2/\k3),aE/\ZV
,020,05:0,1,052+p27é0,u=2a2,peR.
(10) b= a5 (e A (ki + ko) + (1 — €2) Aka) + pler — e2) A (kn + ko), a € APV
«a=0,1,0p>0024+0>#0,u=0,peR
mm)bzi%q—mgAk&aeAzV
w=0,peR.
(Nb) b=e1 Ak1+ (p — Dea A ks 4 (p + Des Aka — e2 A ko + pes Aks, a € N2V
p € R\{O}, u=2p% peR.
(|V) b=eyNki+exNkpy+e3ANks, a=0

uw=2p=0.
V) b=0,ae N*V
uw=0,p=0.

3.2. Poisson structures on E(3)

In all casesc = 0.

() b =a(er Ako— ez Aki) + pes Aks, a € N°Va = 0,1, p > 0, a? + p2 # 0,
w= —2a2, p ER.

(I b=eyANki+exnky+esnks,a=0. u=2,p=0.

() b=0,ae A\’V. u=0, p=0.

We can still use automorphisms gfgenerated by some vectors frovhto restrict the
possible forms of:.

For P(3):

(Ila) Using a two-parameter group of automorphismg generated by, ande, we can
transform this solution to solutions witl: = azey Ae; for a £ p Ora = azeyAex+a_ezne_
for « = p. After such transformationp = —2aza, N = 2 (N denotes the number of
parameters in the solution).

(IIb) Here we user, andes and obtaina = ajes A e3. In this casep = —2a10, N = 2.

(llc) Now usinge, andez we obtaina = a ez Aey; p=2a,, N = 2.

(Illa) Using e_ ande, we obtaina =a ez e, +a_esne_,p=a,.,N=2.

(Illb) As above, usingz_ ande, we obtaina = aze1 A ez +are3 Aey, p = —2pas,
N =3.

(V) Using isomorphisrr}/\2 V ~ V and dilations we can assume thais of one of the
following forms: ex A e3, e1 A ez, e3Ae_, N =0.

For E(3):

(I) Using e; ande, we can always puta = agey A e, p = —2aaz, N = 2.

(111) Using isomorphism/\2 V ~ V and dilations we can assume that e;Aez, N = 0.
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Remark 1.Above we indicate the value gb since p = 0 is a necessary and sufficient
condition for the existence of Poisson Minkowski space. [3]

Remark 2.Solutions (V) for P(3) and (II) for E(3) are directly connected to the dimension
three and have no counterparts in higher dimension.

Remark 3.Solutions (Il) for P(3) and (1) for E(3) are of the well known form [1] valid for
arbitrary inhomogenous»(p, ¢). Namely, for each € V letb := b, 1= n/*e;®Q;, .,. Then
[b,b] = —n(z, 2)Q and these are solutions (lla—c) fer= 0 and wherez is respectively
positive, negative and null vector.

Also if b := b, +zAZ whereZ € h such thatZz = 0. Then A Z,z A Z] =
[b;,z A Z] = 0 and again 4, b)] = —n(z,z). Solutions (lla—c) for« = 1 correspond
respectively toz := es, Z = pks, z := e1, Z := pky, z .= e_, Z := /2p(k1 + ko) and
solution (1) for E(3) corresponds t@ := e3, Z := pks.

Note also that these solutions (with= 0) are tangent lifts of Poisson structure [2] on
S0(1,2) and SO(3) if we identify P(3) and E(3) with tangent groups:TSO(1, 2) and
TSO(3).

Remark 4.Solution (Ill) for P(3) can also be written in a form which gives us new solutions
for so(p, q).

() Let b := b, +zAZ+v A Z wherev is such that:Zv = —z (it follows thatz must
be a null vector). We compute the bracketsAlZ, vAZ] = —2vAzZAZ, [vAZ,zAZ] =0,
[vAZ,b,] =vAzAZ. SO b, bl =[b,+z2AZ,b,+zAZ] = 0. Solution (llla) corresponds
to: z:=e_, Z = %(kl +kp), vi= —(e_ + e3).

More generally: leth = b, + ) ., (z + v;) A Z;, whereZ;z = 0, Zyv; = -4z,
[Z;,Z]] = 0. Then p,b] = [b,,b,]. For example ifh = so(1,n) one can take:
Zi=e1—epi1, V=6, Z; == R1; + Q1,1 = 2,...,n.

(Illb) Let b be as above, but now we choosesuch that: Zv = v. Then p, b] =
[b;+Z2AZ, b, +zANZ]+2[vAZ, b, +zAZ]+[vAZ,vAZ]. Now [vAZ,vA Z] =0 and
[VAZ,b,]=vAZ(Mb,)—ZAv(b,) =vAbz, —ZA(—VAZ) =VAZAZ, [VAZ,zANZ] =
—ZANZvAz=—-vAZAZ. Sowe havel},b] =[b,+zAZ,b, +zAZ] = —1(z, 2)Q.
These are solutions (llIb) fop > 0 (section 5.2.1).

4. Computation of the Schouten brackefr, r].

To solve equations (4) and (5) we compute the bracked [explicitly using identifications
from section 1 and the fact that the bracket intertwines the corresponding representations
of h. We obtain a system of equations on EVigl.

Let us define mappings Efd) ® End(V) — End(V):

Fo(a ®b) := Tr(a'b)idy, thenFp(a ® b) = Fo(b ® a) and Fy intertwines representation
on EndV) ® End(V) with trivial representation o

F1(a®b) :=a'b—b'a, thenF1(a ® b) = —F1(b®a) and F; intertwines representation
on EndV) ® End(V) with representation ofi¥;.

Fo(a®b):=a'b+ba— %Tr(a’b)idv then Fo(a ® b) = Fo(b ® a) and F» intertwines
representation on Eiitl) ® End(V) with representation oivs.

r=a+bt+ce(N*V)®(Vaha A h)=WieEndV)e W,

Letb=x+y+1 € W, ® W1 & Wy be the decomposition (1).

Then |, 7] = 2[b, a] + 2[c, a] + [b, b] + 2[b, c] + [c, c] = 2([x,a] + [y, a] +[t,a]) +
2[c, a]+([x, x]+[y, yI+[r, t]+2[x, y]4+2[x, 1]+ 2[y, tD +2([x, c] +[y, c] +[t, cD +[c, c].
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Next, each term is computed separately and brackets are expressed as combinations of
Fy, F1, F». The detailed computations are given in the appendix. It results that the equations
(4) and (5) are equivalent to the following system of equations on(End

Tr(C?» =0 (6)
Tr(XC) =0 7
XC—-CX+3(YC+CY)=0 (8)
(—XC—-CX)+(¥C—-CY)=0 (9)
ETH(CA) +Tr(X) —iTryd) + 22 = (10)
—(CA-—AC)+2(XY+YX)+4X =0 (11)
CA+ AC — 5Tr(CA)idy — 4(Y? — 3Tr(Y?idy) —2(YX — XY) +4tY =0 (12)
Tr(XA) = p (13)

Al=—AC'=-C,X'=-X,Y' =Y, Tr(Y) =0, T =: ridy.
Capital lettersA, C, X, Y, T denote elements of EQH) corresponding to the terms denoted
by small letters in decomposition of

5. Solutions for P(3)

5.1. Solutions folC # 0

Equation (6) means that is antisymmetric with null kernel so one can choose a basis

0 0 1
(e_,es,ez)suchthatC = {0 O 0). C is invariant under a one-parameter subgroup of
01 0
S0O(1, 2) stabilizinge_. On the chosen basis this group acts as follows:
eé_ > e_
r2
e+r—>3e,+e++r63 reR- (14)

e3> re_ +e3

Going back to/\? h we havec = %(kl + ko) Aka= Qg Ao,
Before we move on to the next equations, let us note thatdfV then the action of

automorphism generated byon ¢ is given by: v(c) = ¢ — Jiik3v A (k1 + ko) + %(klv +

kov) A k3 + Jié(klv + kov) A kzv. Using appriopriater we can always assume th&t+ 0
andb contains no terms; A ko andex A k;.

From equations (8) and (9) it follows that kéris invariant underX andY. From
equation (7) it follows that keX is orthogonal to ke€. So X = «C, o # 0 (since we can
chooseB with X # 0 and no terms; ® €2, e» ® eb).

N bl —bg
Sincee_ is an eigenvector of andY is symmetric and tracelesgs= (0 s 0 )

0 b3 —2
From (8)s = 0 and from (9)b3 = —« and sincex # 0 we can use (14) to put, = 0.
t 0 2
In this way we obtainB = X + Y +tidy = (0 t 0 ) andb = V2a(e; — e2) A
0 0 ¢

k3 + t(e1 A k1 + ex A ko + e3 A k3). Using a one-parameter group of automorphismg of
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generated by vectar; one can transform this solution to solution with= 0. So we have
X=Y=0.

From equations (10)—(12§ Tr(AC) = u—2t, AC = CA, AC+CA = 3 Tr(AC)idy.
Since AC is not invertiblew = 2t2 and THAC) = 0. It follows thatA = 0.

Using dilations: (v, X) +— (Av, X), A € R\ {0} we can assume that= 0 or¢ = 1.
This is solution (1) in our list.

5.2. Solutions folC =0

In this case equations (6)—(13) reduce to the following:

Tr(X?) — 3Tr(y®) + 2 = 1 (15)
XY+D+¥+1X=0 (16)
—4(Y? — ITr(Y?idy) —2(YX — XY) + 4tY =0 (17)
Tr(XA) = p. (18)

We see thatA is any antisymmetric matrix.

5.2.1. Solutions foX # 0. Let us write equation (17) in the following form:
1
(X —Y+20)(Y +1)=2%— 3 Tr(Y?).
Since X # 0 and X is antisymmetric it follows that Z — %Tr(YZ) = 0 (otherwise

multiplying by (¥ + )~ we obtainX = 0). So for X # 0 we have the following
equations:

Tr(X?) =pn (19)
XY+)+X+1X=0 (20)
X-Y+2¥ +1)=0 (22)
Tr(Y?) = 612 (22)
Tr(XA) = p. (23)

e dimkenY +¢) = 3. ThenY =0, = 0 andX is any antisymmetric matrix. These
are solutions (lla—c) fop = 0, « # 0. Using dilations one can put = 1.

e dimkenY +1) = 2. If nlkeny+n IS NONdegenerate then+ ¢ has non-null eigenvector
v e (ker(Y 4 1))+ with eigenvalue. # 0. Since kefY + 1) is X-invariant we haveXv = 0.
From (21) one has. = 3r # 0. So forn(v,v) > 0 we can choose orthonormal basis
(e1, ez, e3) such that:

0O 0 O 3t 00
X:(O 0 —a),Y+t=<O 0 0)
0O « O 0O 0O

thenb = 3te1 A k1 + a(es A ko — e2 A k3).
After rescaling this is solution (lIb) fox = 1, p £ 0.

0O « O 0 0 O
FOI’T}(U,U)<OIX=<O{ 0 0) Y+t=<0 0 0).

0 0O 0 0 %
This is solution (lla) fore = 1, p # 0.

If nlkeny+r iS degenerate one can choose basis e, e3) with e_, e3 € ker(Y + 7).
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0 B O
NowY+t=<0 0 O),,BeR\{O}.
0 0 O
BecauseY is traceless = 0 and from (21)Xe_ = 0 and we obtain the family of
solutions:
0 01 0 B O
X:(O 0 0) Y:(O 0 0>ﬂeR\{0}.
0 1 0 0 0O

Sob = %(63 A (k1 + k) + (ex — e2) A k3) + g(el — e2) A (kg + k). This is solution (llc)
fora =1, p #0.

We can putp > 0, since automorphisms gf which on V are given byP;(v) =
v—n;;n(e;, v)e;, where i= 1 for (lla), i = 2 for (Ilb) and i= 3 for (lic) transform solutions
(Olr p) to (O{, _,0)

e dimkenY +1) = 1. In this case k€l + ¢) has to be null subspace. Otherwise, since
ker(Y + ¢) is X invariant, we obtainXv = 0 for v € ker(Y + ¢). Now Y + ¢ is invertible
on vt and this subspace ¥-invariant. So we obtairk = 0 from (21). As above, let us

0 by —b3
choose basise_, e, e3), e_ e ker(Y +1). ThenY 4+t = <0 0 0 )
0 b3 3t

(@) e_ € kerX.
0 01
SoX = (O 0 O). From (20)r = 0 and since k&Y +¢) is one-dimensionals # 0,
0 10
so we can use (14) to pat = 0. Now from (21)b3 = —1. This gives us a solution:
0 0 2
B=X+Y +tidy = (O 0 0) S0b = +/2(e1 — e2) A ka. This is solution (llla).
0 0O

(b) Xe_ =Xe_, 2 #£0

0 0 O
This gives family of solutions:

A 0 O
SoX = (0 —A 0). Using (20): b3 = 0, soby,t # 0. From (21):A = =3t # 0.

-3t by O
B:X+Y+tidv:< 0 o) w =182 1t,b1 € R\ {0}.
0 0 %

Sob = ey Aki+ (3t —L)ea Aks+ (3t + Z)er Akp — Lea Ak + 3tes Aks. Dividing
this by % we obtain solutions (l1Ib).
If p > 0(tby > 0) we can use (14) to transform this solution to the following form:

-3 0 =«
B=<O 3 0)
0 0 %

thenb = 3t(e1/\k2+e2Ak1+egAk3)+Jié(el—ez)Akg =b,+zANZ+vAZfor
z .= 3tes, Z := ks, v :=se_. This is the solution given in remark 4.

5.2.2. Solutions foX = 0. From (15) T(Y?) = 612 — 3u. Substituting this to (17) we
obtain the only equation for andz: Y2 —tY + (u — 2¢%)idy =0

eV =0,7r€ R, n =22 Fort =0 we obtain solution five and far # 0 (after
rescaling)b = e1 A k1 + ex A ko + e3 A k3. It is easy to see, that for evetye /\2 V there
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existv € V such that:v(b) = b 4+ a. So we can always put in the solutian= 0. This is
solution (1V).

e SupposeY # 0.

(a) Yz = Az for some positivez. SoY can be put into diagonal form and it is easy to
see that there exists orthonormal bagis e, e3) such thaty + ¢ is of one of the following

forms:
3t 0 O 0 0 O
Y+t=<0 0 0) orY+t=(0 0 0> forr € R\ {0}.

0 0O 0 0

In both casegt = 0. These are solutions (lla) and b fer= 0, p # 0.
(b) Yv = Av for some null vectow. Let us choose basig_, e, ¢3) such thate_ = v.

A by O
If A # 0 then the basis can be chosen such that (0 A 0 ) Using the
0 0 -2

equation onY one can see thdt = 0 andix = —r so this gives us no new solution.
If A = 0 than it follows thath; = 0 and bothr and 1 are equal to 0. So we obtain

0 b, O
another solutior¥ = (O 0 0), b1 € R\ {0}; b = %(el —e2) A (ky + k). This is
0 0 O

solution (lic) fora = 0, p # 0.

6. Solutions for E(3)

From (6) it follows thatC = 0.

6.1. Solutions foX # 0

e dimkenY +¢) = 3. SoY = 0,r = 0 and X is any antisymmetric matrix. This is
solution (1) forp = 0, @ # 0.

e dimkenY + t) = 2. It follows that(ker(Y + ¢))* = kerX. In this way one obtains
solutions (I) fora, p # 0.

edimkenY+r) = 1. Soke(Y+r) = kerX and since’ +r is invertible on(ker(Y +1))*,
X = 0 contrary to our assumption, so there is no solution of this type.

6.2. Solutions foX = 0

In this case, as itP (3) we obtain only one equation ferandY: Y2 —tY +(u—2¢2)idy = 0.
It can easily be solved and one obtains solutions (I)efet O, solution (1) and (l11).

7. Appendix

We use the following notation: we denote elements /Q?g by small letters and
corresponding elements in E¢id) by capital ones.

e [c.c]l € A°h ~ W [,]: We ® Wi — Wy, so it is proportional to
Fy. Let us choose:c1 = k1 A kp, then C1 = n1ina0ks. Computing 1, ¢1] one has
[C, C] = —n11n2n33Fo(C ® C) = n1amzonzs Tr(C?)idy .

o[a,c]e/\z‘/@f)ZWo@Wl@Wz [,]: W1 @ W) — Wod W1 @ Wy, so
[A,C]l =aFo(AQRC)+ BF1(ARC)+ yFo(AQ® C). Let us chooseyy = e1 A ey, c1—as
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above and; = k1 A k3. ThenCy, = —n11N33k2, A1 = k3. We compute: L[]_, C]_] = n22e1 N\

e3Nky — 771162/\63/\kl and kl]_, C2] = 772261A€3Ak3, and find thatr = —%, B=y= —%.

In this way: [A, C] = $Tr(AC)idy + 3(AC — CA) + 3(AC + CA — 2 Tr(AC)idy).
o[b,cleV ®/\2h ~ Wo@ W1@ Wa. Leth =1+ x +y be a decomposition (1). Then

[b,c] =1t c] +[x,c]+ [y, c].

(%) [z, c] [,]: Wo® W1 — Wp & Wy & W, so it is proportional toF; and
Fi(T ® C) = 2TC. Let us choose;—as abovey; = e; A k1 + ex A kp + e3 A k3, then
T1 = n11n22n33idy. Computing fi, ¢1] we obtain 0, soT, C] = 0.

(*) [x, c] L[1: Wi@Wy; — WodW1®W,. SOX,Cl=aFp(XQC)+BF1(X®
C)+ yF,(X ® C). Let us chooseic, co—as abovex; = —ni1e2 A k1 + nazenko, then
X1 = n1n2om3sks. Computing:

[x1,c1] = —n2omszer A ko A k3 + n11m33e2 A k1 A k3 — 27711772263 A ki A ko and
[x1, ca] = —n11m20e3 A kg A k3. It follows thata = 3, B = 2, y = l

() [y, ] [,]: W1 @ W, — Wy W1 & W,. Since the multlpllcmes oWy, Wy,
W, in Wy ® W, are respectively 0,1 and 1Y ,[C] is a linear combination of; and F».

[Y, C] =BF1(YQC)+y Fo(YRC). Choosingcl—as aboveyl = naoe3Nko+n33e2 Nk3
we haveY; = ni1m2anss(nz2zes ® e + naze2 ® ¢3). Now we compute yi, c1] = n22n3s(er A
ki A ko — 2e3 A ko Akg) It follows that g = 3, y = 1.

So[B, C] = 3 Tr(XO)idy+3(B(YC+CY)—XC+CX)+3(—XC—CX+3 Tr(XC)idy+
YC—-CY).

o [b,b] € VRN~ Wod W1 Wa.

[b,b] =[x, x] + 2[x, y] + 2[x, 1] + 2[y, 1] + [y, y] + [¢, t].

(%) [x, x] L[]: Wi ® Wy — Wo® Wy @ W, is a symmetric intertwiner.

So [X,X] = aFo(X ® X) + yF2(X ® X). Let x; be as above, themx{, x1] =
27)117]22(—773361/\62/\k3+ T}22€1/\6‘3/\k2 —1n11€2 ANe3Nky). It follows thata = —1, Yy = 0.

(%) [y, ] []: Wa® Wo — Wo@® W1® W,. The multiplicities of Wy, W1, W» in

W,® W are equal to 1. Since the bracket is symmetri€: Y] = a Fo(YQY)+y Fo(Y ®Y).
Let y; be as above, theny{, y1] = 2n11m33(—n3ze1 Aea Akz+n2ze1 AesAka+n11e2 AeaAky).
Soa=—z,y =-2.

(%) [x, y] [,1]: W1 @ Wy — Wy & W1 & W,. Since the multiplicities ofiy,
W1, Wy in Wy ® W, are respectively 0,1, 1X], Y] is a linear combination of; and Fx:
[X, Y] =BF1(X®Y)+ yF,(X ®Y). Now we have {1, y1] = 2n11n20n33€2 A e3 A ka. It
follows thatg = y = —1.

(%) [z, x] [,]: Wo® Wy —> Wy d W1 d Wo, so it is proportional toF; and
Fi(T ® X) = 2T X. Computing: 1, x1] = 2n11m22(e1 A e3 A k1 + e2 A e3 A ko) we obtain
[X,T] =2TX.

(%) [z, ¥] [,]: Wo® Wo — Wy & W1 & Wy, so it is proportional toF, and
Fo(T ® Y) = 2TY. Computing: [, y1] = 2n2on33(er A ex A ko —e1 A ez A kz). SO
[T,Y]=2TY.

() [z, 1] [,1: Wo® Wog —> Wy, so it is proportional taFy. Computing:

[l]_, l‘1] = 2(773361 A e2 A ks — nper A ez A ko + ni1ea A ez A k1) and we obtain
[T.T] = 2Tr(T?)idy.

In this way: [B, B] = (Tr(X?) — 3 Tr(Y?) + 2 Tr(T?))idy + 2(XY + Y X + XT + T X) +
—2(2Y2 — 2Tr(Y?idy — XY + YX — 2TY).

e [a,bl € N3V ~ W,.

(%) [a, ¥] [,]: W1 ® W, — W, Soitis equal to 0.

(%) [a, 1] [,]: W1 ® Wo —> Wp. Soitis equal to 0.

(*) [a, x] [,]: W1 ® Wi —> Wy. So it is proportional taFy. We compute:
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[a]_, X]_] = —27’]11772261 N ex N e3 and obtain [4, X] = nllnzzﬁggTr(AX)idv.
So [A, B] = n11m22n33 Tr(AB)idy = 111122133 Tr(AX)idy .

Putting all of the results together we obtain the following system of equations aiVind
equivalent to equation (4) and (5).

Tr(C? =0 (24)
Tr(XC) =0 (25)
XC—-CX+3YC+CY)=0 (26)
(-XC—-CX)+(YC—-CY)=0 (27)
ETH(CA) +Tr(X») —iTryd) + 2 = (28)
—(CA—AC)+2(XY +YX)+4X =0 (29)
CA+ AC — 3Tr(CA)idy — 4Y? — $Tr(Y?)idy) —2(YX — XY) +4tY =0 (30)
Tr(XA) = p. (31)

Al=—A,C' =-C, X' =—X,Y' =Y, Tr(Y) =0, T =: tidy.
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