Poisson-Lie structures on Poincaré and Euclidean groups in three dimensions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 314555
(http://iopscience.iop.org/0305-4470/31/19/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.122
The article was downloaded on 02/06/2010 at 06:51

Please note that terms and conditions apply.

Poisson-Lie structures on Poincaré and Euclidean groups in three dimensions

Piotr Stachura \dagger
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Poland

Received 30 June 1997, in final form 9 December 1997

Abstract

The complete list of Poisson-Lie structures on Poincaré and Euclidean groups in three dimensions is presented. Some new solutions for inhomogenous $S O(p, q)$ are given.

1. Introduction

The problem of classification of Poisson-Lie structures on inhomogenous $S O(p, q)$ groups (i.e. the semidirect product of $S O(p, q)$ and R^{p+q}, where the action is given by fundamental representation) is not yet solved in general. It was investigated in [1] where it was shown that all Poisson-Lie structures on these groups (for $p+q>2$) are coboundary. Also a number of solutions were presented, especially for inhomogenous $S O(1,3)$ but even for this group it is not known whether other solutions exist. If we think of Poisson-Lie groups as 'classical limits' of quantum groups, it is reasonable, as a first step to find quantum deformations, to study the possible Poisson-Lie structures on a given group and then select those which can be 'quantized' on the C^{*}-algebra level [4]. In this paper we give the complete list of bialgebra structures on inhomogenous $\operatorname{so}(3)$ and $\operatorname{so}(1,2)$ algebras. The structures were found 'by force' so the paper is rather technical. Nevertheless we were able to find a new solution for any dimension. These solutions come from the general construction which will be described elsewhere [5] and are presented in the remarks within section 3.

2. Basic definitions and notation

Let (V, η) be a three-dimensional, real vector space with symmetric, nondegenerate, bilinear form η. In fact, we have two situations: either the signature of η is $(3,0)$-this corresponds to the Euclidean group or the signature is $(1,2)$-this corresponds to the Poincaré Group. By η we also denote isomorphism $V \simeq V^{*}$ given by: $\eta_{x}(y):=\eta(x, y) . A^{t}$ is the transposition defined by $\eta: \eta(A x, y)=: \eta\left(x, A^{t} y\right)$. Let $H:=S O(\eta)$ be the special orthogonal group and $\mathfrak{h}:=\operatorname{so}(\eta)$ its Lie algebra. H acts on V by fundamental representation. Let G be a semidirect product defined by this action and \mathfrak{g} its Lie algebra.

We use the following natural isomorphisms intertwining with the corresponding representations of $H . \Omega: V \wedge V \rightarrow \mathfrak{h}: \Omega_{x, y}:=\Omega(x \wedge y):=x \otimes \eta(y)-y \otimes \eta(x)$. For any orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ we denote: $k_{1}:=\Omega_{e_{2}, e_{3}}, k_{2}:=\Omega_{e_{3}, e_{1}}, k_{3}:=\Omega_{e_{1}, e_{2}}$.
\dagger E-mail address: stachura@fuw.edu.pl

Note that Ω viewed as an element of $\left(\bigwedge^{2} V\right)^{*} \otimes \mathfrak{h} \simeq \bigwedge^{2} V \otimes \mathfrak{h} \subset \bigwedge^{3} \mathfrak{g}$ is G-invariant [1]. In any basis:

$$
\begin{aligned}
& \Omega=\eta^{i j} \eta^{k l} e_{j} \wedge e_{k} \otimes \Omega_{j l} \\
& \pi: V \wedge V \rightarrow V: \eta(\pi(x \wedge y))(z):=\operatorname{Vol}(x \wedge y \wedge z)
\end{aligned}
$$

where Vol is volume form on V determined (up to a sign) by η. In any orthonormal, oriented basis: $\pi\left(e_{i} \wedge e_{j}\right)=\Sigma_{k} \epsilon_{i j k} \eta_{i i} \eta_{j j} e_{k}$.

These two isomorphisms provide us with further identifications:
$V \otimes \mathfrak{h} \simeq V \otimes V \simeq V \otimes V^{*} \simeq \operatorname{End}(V), e_{i} \otimes k_{j} \mapsto \eta_{11} \eta_{22} \eta_{33} e_{i} \otimes e^{j}$.
$\bigwedge^{2} V \otimes \mathfrak{h} \simeq V \otimes \mathfrak{h} \simeq \operatorname{End}(V), e_{i} \wedge e_{j} \otimes k_{l} \mapsto \Sigma_{k} \epsilon_{i j k} \eta_{k k} e_{k} \otimes e^{l}$.
$V \otimes \bigwedge^{2} \mathfrak{h} \simeq V \otimes \bigwedge^{2} V \simeq V \otimes \mathfrak{h} \simeq \operatorname{End}(V), e_{i} \otimes k_{j} \wedge k_{l} \mapsto \Sigma_{k} \epsilon_{j l k} \eta_{k k} e_{i} \otimes e^{k}$.
For any orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ we denote: $e_{-}:=\frac{1}{\sqrt{2}}\left(e_{1}-e_{2}\right), e_{+}:=\frac{1}{\sqrt{2}}\left(e_{1}+e_{2}\right)$.
H acts on $\operatorname{End}(V)$ by conjugation and results in the decomposition into irreducible subspaces:

$$
\begin{equation*}
\operatorname{End}(V)=W_{0} \oplus W_{1} \oplus W_{2} \tag{1}
\end{equation*}
$$

where: $W_{0}:=\left\{\lambda \operatorname{id}_{V}: \lambda \in R\right\}, W_{1}:=\mathfrak{h}, W_{2}:=\left\{a \in \operatorname{End}(V): a^{t}=a\right.$ and $\left.\operatorname{Tr}(a)=0\right\}$.
It is known that Poisson-Lie structures on G are coboundary [1], i.e. are given by some element $r \in \bigwedge^{2} \mathfrak{g}$ satisfying equation $[r, r] \in\left(\bigwedge^{3} \mathfrak{g}\right)_{i n v}$ (where $[r, r]$ is the Schouten bracket)

Note the following lemma.
Lemma 1. $\left(\bigwedge^{3} \mathfrak{g}\right)_{\text {inv }}$ is two-dimensional and is spanned by elements: $\Omega \in \bigwedge^{2} V \otimes \mathfrak{h}$ and $\tilde{\eta}:=e_{1} \wedge e_{2} \wedge e_{3} \in \bigwedge^{3} V$.

Proof.

$$
\begin{equation*}
\bigwedge^{3} \mathfrak{g}=\left(\bigwedge^{3} V\right) \oplus\left(\bigwedge^{2} V \otimes \mathfrak{h}\right) \oplus\left(V \otimes \bigwedge^{2} \mathfrak{h}\right) \oplus\left(\bigwedge^{3} \mathfrak{h}\right) \tag{2}
\end{equation*}
$$

This decomposition is H-invariant and we have the following H-invariant subspaces:
$\bigwedge^{3} V$-this is one dimensional H-invariant subspace;
$\bigwedge^{2} V \otimes \mathfrak{h} \simeq \operatorname{End}(V)=W_{0} \oplus W_{1} \oplus W_{2}$-so the only H-invariants elements are in the image of W_{0} and this is subspace spanned by Ω;

$$
V \otimes \bigwedge^{2} \mathfrak{h} \simeq \operatorname{End}(V)=W_{0} \oplus W_{1} \oplus W_{2}
$$

so as above the only H-invariants elements are in the image of W_{0}.
$\bigwedge^{3} \mathfrak{h}$-this is a one-dimensional H-invariant subspace
One can check that only the first two subspaces are V-invariant.
Let $r=a+b+c$ be a decomposition corresponding to:

$$
\begin{equation*}
\bigwedge^{2} \mathfrak{g}=\left(\bigwedge^{2} V\right) \oplus(V \otimes \mathfrak{h}) \oplus\left(\bigwedge^{2} \mathfrak{h}\right) \tag{3}
\end{equation*}
$$

then $[r, r]=2[a, b]+(2[a, c]+[b, b])+2[b, c]+[c, c]$ is the decomposition corresponding to (2). From the lemma above it follows that we have to solve equations:

$$
\begin{array}{lrr}
{[a, b]=p \tilde{\eta}} & 2[a, c]+[b, b]=\mu \Omega & p, \mu \in R \\
{[b, c]=0} & {[c, c]=0 .} & \tag{5}
\end{array}
$$

3. Results

The main results of this paper are shown in the following complete list of solutions (up to automorphisms of \mathfrak{g}) of equations (4) and (5) for $P(3)$ and $E(3)$.

3.1. Poisson structures on $P(3)$

(I) $c=\frac{1}{\sqrt{2}}\left(k_{1}+k_{2}\right) \wedge k_{3}, b=\alpha\left(e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}\right), a=0$
$\alpha=0,1, \mu=2 \alpha^{2}, p=0$.
In the remaining cases $c=0$.
(IIa) $b=\rho e_{3} \wedge k_{3}+\alpha\left(e_{2} \wedge k_{1}+e_{1} \wedge k_{2}\right), a \in \bigwedge^{2} V$
$\rho \geqslant 0, \alpha=0,1, \alpha^{2}+\rho^{2} \neq 0, \mu=-2 \alpha^{2}, p \in R$.
(IIb) $b=\rho e_{1} \wedge k_{1}+\alpha\left(e_{3} \wedge k_{2}-e_{2} \wedge k_{3}\right), a \in \bigwedge^{2} V$
$\rho \geqslant 0, \alpha=0,1, \alpha^{2}+\rho^{2} \neq 0, \mu=2 \alpha^{2}, p \in R$.
(IIc) $b=\alpha \frac{1}{\sqrt{2}}\left(e_{3} \wedge\left(k_{1}+k_{2}\right)+\left(e_{1}-e_{2}\right) \wedge k_{3}\right)+\rho\left(e_{1}-e_{2}\right) \wedge\left(k_{1}+k_{2}\right), a \in \bigwedge^{2} V$
$\alpha=0,1, \rho \geqslant 0, \alpha^{2}+\rho^{2} \neq 0, \mu=0, p \in R$.
(IIIa) $b=\frac{1}{\sqrt{2}}\left(e_{1}-e_{2}\right) \wedge k_{3}, a \in \bigwedge^{2} V$
$\mu=0, p \in R$.
(IIIb) $b=e_{1} \wedge k_{1}+(\rho-1) e_{2} \wedge k_{1}+(\rho+1) e_{1} \wedge k_{2}-e_{2} \wedge k_{2}+\rho e_{3} \wedge k_{3}, a \in \bigwedge^{2} V$
$\rho \in R \backslash\{0\}, \mu=2 \rho^{2}, p \in R$.
(IV) $b=e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}, a=0$
$\mu=2, p=0$.
(V) $b=0, a \in \bigwedge^{2} V$
$\mu=0, p=0$.

3.2. Poisson structures on $E(3)$

In all cases $c=0$.
(I) $b=\alpha\left(e_{1} \wedge k_{2}-e_{2} \wedge k_{1}\right)+\rho e_{3} \wedge k_{3}, a \in \bigwedge^{2} V \alpha=0,1, \rho \geqslant 0, \alpha^{2}+\rho^{2} \neq 0$, $\mu=-2 \alpha^{2}, p \in R$.
(II) $b=e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}, a=0 . \mu=2, p=0$.
(III) $b=0, a \in \bigwedge^{2} V . \mu=0, p=0$.

We can still use automorphisms of \mathfrak{g} generated by some vectors from V to restrict the possible forms of a.

For $P(3)$:
(IIa) Using a two-parameter group of automorphisms of \mathfrak{g} generated by e_{1} and e_{2} we can transform this solution to solutions with: $a=a_{3} e_{1} \wedge e_{2}$ for $\alpha \neq \rho$ or $a=a_{3} e_{1} \wedge e_{2}+a_{-} e_{3} \wedge e_{-}$ for $\alpha=\rho$. After such transformation $p=-2 a_{3} \alpha, N=2$ (N denotes the number of parameters in the solution).
(IIb) Here we use e_{2} and e_{3} and obtain $a=a_{1} e_{2} \wedge e_{3}$. In this case $p=-2 a_{1} \alpha, N=2$.
(IIc) Now using e_{+}and e_{3} we obtain $a=a_{+} e_{3} \wedge e_{+} ; p=2 a_{+}, N=2$.
(IIIa) Using e_{-}and e_{+}we obtain $a=a_{+} e_{3} \wedge e_{+}+a_{-} e_{3} \wedge e_{-}, p=a_{+}, N=2$.
(IIIb) As above, using e_{-}and e_{+}we obtain $a=a_{3} e_{1} \wedge e_{2}+a_{+} e_{3} \wedge e_{+}, p=-2 \rho a_{3}$, $N=3$.
(V) Using isomorphism $\bigwedge^{2} V \simeq V$ and dilations we can assume that a is of one of the following forms: $e_{2} \wedge e_{3}, e_{1} \wedge e_{2}, e_{3} \wedge e_{-}, N=0$.

For $\mathrm{E}(3)$:
(I) Using e_{1} and e_{2} we can always put: $a=a_{3} e_{1} \wedge e_{2}, p=-2 \alpha a_{3}, N=2$.
(III) Using isomorphism $\bigwedge^{2} V \simeq V$ and dilations we can assume that $a=e_{1} \wedge e_{2}, N=0$.

Remark 1. Above we indicate the value of p since $p=0$ is a necessary and sufficient condition for the existence of Poisson Minkowski space. [3]

Remark 2. Solutions (IV) for $P(3)$ and (II) for $E(3)$ are directly connected to the dimension three and have no counterparts in higher dimension.

Remark 3. Solutions (II) for P (3) and (I) for E (3) are of the well known form [1] valid for arbitrary inhomogenous $\operatorname{so}(p, q)$. Namely, for each $z \in V$ let $b:=b_{z}:=\eta^{j k} e_{j} \otimes \Omega_{z, e_{k}}$. Then $[b, b]=-\eta(z, z) \Omega$ and these are solutions (IIa-c) for $\alpha=0$ and where z is respectively positive, negative and null vector.

Also if $b:=b_{z}+z \wedge Z$ where $Z \in \mathfrak{h}$ such that $Z z=0$. Then $[z \wedge Z, z \wedge Z]=$ $\left[b_{z}, z \wedge Z\right]=0$ and again $[b, b]=-\eta(z, z) \Omega$. Solutions (IIa-c) for $\alpha=1$ correspond respectively to $z:=e_{3}, Z:=\rho k_{3}, z:=e_{1}, Z:=\rho k_{1}, z:=e_{-}, Z:=\sqrt{2} \rho\left(k_{1}+k_{2}\right)$ and solution (I) for $E(3)$ corresponds to $z:=e_{3}, Z:=\rho k_{3}$.

Note also that these solutions (with $\rho=0$) are tangent lifts of Poisson structure [2] on $S O(1,2)$ and $S O(3)$ if we identify $P(3)$ and $E(3)$ with tangent groups: $T S O(1,2)$ and TSO(3).

Remark 4. Solution (III) for $P(3)$ can also be written in a form which gives us new solutions for $\operatorname{so}(p, q)$.
(IIII) Let $b:=b_{z}+z \wedge Z+v \wedge Z$ where v is such that: $Z v=-z$ (it follows that z must be a null vector). We compute the brackets: $[v \wedge Z, v \wedge Z]=-2 v \wedge z \wedge Z,[v \wedge Z, z \wedge Z]=0$, $\left[v \wedge Z, b_{z}\right]=v \wedge z \wedge Z$. So $[b, b]=\left[b_{z}+z \wedge Z, b_{z}+z \wedge Z\right]=0$. Solution (IIIa) corresponds to: $z:=e_{-}, Z:=\frac{1}{\sqrt{2}}\left(k_{1}+k_{2}\right), v:=-\left(e_{-}+e_{3}\right)$.

More generally: let $b:=b_{z}+\sum_{i}\left(z+v_{i}\right) \wedge Z_{i}$, where $Z_{i} z=0, Z_{i} v_{j}=-\delta_{i j} z$, $\left[Z_{i}, Z_{j}\right]=0$. Then $[b, b]=\left[b_{z}, b_{z}\right]$. For example if $\mathfrak{h}=s o(1, n)$ one can take: $z:=e_{1}-e_{n+1}, v_{i}:=e_{i}, Z_{i}:=\Omega_{1, i}+\Omega_{i, n+1}, i=2, \ldots, n$.
(IIIb) Let b be as above, but now we choose v such that: $Z v=v$. Then $[b, b]=$ $\left[b_{z}+z \wedge Z, b_{z}+z \wedge Z\right]+2\left[v \wedge Z, b_{z}+z \wedge Z\right]+[v \wedge Z, v \wedge Z]$. Now $[v \wedge Z, v \wedge Z]=0$ and $\left[v \wedge Z, b_{z}\right]=v \wedge Z\left(b_{z}\right)-Z \wedge v\left(b_{z}\right)=v \wedge b_{Z z}-Z \wedge(-v \wedge z)=v \wedge z \wedge Z,[v \wedge Z, z \wedge Z]=$ $-Z \wedge Z v \wedge z=-v \wedge z \wedge Z$. So we have $[b, b]=\left[b_{z}+z \wedge Z, b_{z}+z \wedge Z\right]=-\eta(z, z) \Omega$. These are solutions (IIIb) for $\rho>0$ (section 5.2.1).

4. Computation of the Schouten bracket $[r, r]$.

To solve equations (4) and (5) we compute the bracket $[r, r]$ explicitly using identifications from section 1 and the fact that the bracket intertwines the corresponding representations of \mathfrak{h}. We obtain a system of equations on $\operatorname{End}(V)$.

Let us define mappings $\operatorname{End}(V) \otimes \operatorname{End}(V) \longrightarrow \operatorname{End}(V)$:
$F_{0}(a \otimes b):=\operatorname{Tr}\left(a^{t} b\right)$ id $_{V}$, then $F_{0}(a \otimes b)=F_{0}(b \otimes a)$ and F_{0} intertwines representation on $\operatorname{End}(V) \otimes \operatorname{End}(V)$ with trivial representation on W_{0}.
$F_{1}(a \otimes b):=a^{t} b-b^{t} a$, then $F_{1}(a \otimes b)=-F_{1}(b \otimes a)$ and F_{1} intertwines representation on $\operatorname{End}(V) \otimes \operatorname{End}(V)$ with representation on W_{1}.
$F_{2}(a \otimes b):=a^{t} b+b^{t} a-\frac{2}{3} \operatorname{Tr}\left(a^{t} b\right) \operatorname{id}_{V}$ then $F_{2}(a \otimes b)=F_{2}(b \otimes a)$ and F_{2} intertwines representation on $\operatorname{End}(V) \otimes \operatorname{End}(V)$ with representation on W_{2}.
$r=a+b+c \in\left(\bigwedge^{2} V\right) \oplus(V \otimes \mathfrak{h}) \oplus\left(\bigwedge^{2} \mathfrak{h}\right) \simeq W_{1} \oplus \operatorname{End}(V) \oplus W_{1}$
Let $b=x+y+t \in W_{2} \oplus W_{1} \oplus W_{0}$ be the decomposition (1).
Then $[r, r]=2[b, a]+2[c, a]+[b, b]+2[b, c]+[c, c]=2([x, a]+[y, a]+[t, a])+$ $2[c, a]+([x, x]+[y, y]+[t, t]+2[x, y]+2[x, t]+2[y, t])+2([x, c]+[y, c]+[t, c])+[c, c]$.

Next, each term is computed separately and brackets are expressed as combinations of F_{0}, F_{1}, F_{2}. The detailed computations are given in the appendix. It results that the equations (4) and (5) are equivalent to the following system of equations on $\operatorname{End}(V)$.
$\operatorname{Tr}\left(C^{2}\right)=0$
$\operatorname{Tr}(X C)=0$
$X C-C X+3(Y C+C Y)=0$
$(-X C-C X)+(Y C-C Y)=0$
$\frac{2}{3} \operatorname{Tr}(C A)+\operatorname{Tr}\left(X^{2}\right)-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)+2 t^{2}=\mu$
$-(C A-A C)+2(X Y+Y X)+4 t X=0$
$C A+A C-\frac{2}{3} \operatorname{Tr}(C A) \operatorname{id}_{V}-4\left(Y^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right) \operatorname{id}_{V}\right)-2(Y X-X Y)+4 t Y=0$
$\operatorname{Tr}(X A)=p$
$A^{t}=-A, C^{t}=-C, X^{t}=-X, Y^{t}=Y, \operatorname{Tr}(Y)=0, T=: t \mathrm{id}_{V}$.
Capital letters A, C, X, Y, T denote elements of $\operatorname{End}(V)$ corresponding to the terms denoted by small letters in decomposition of r.

5. Solutions for $\boldsymbol{P}(\mathbf{3})$

5.1. Solutions for $C \neq 0$

Equation (6) means that C is antisymmetric with null kernel so one can choose a basis $\left(e_{-}, e_{+}, e_{3}\right)$ such that $C=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right) . C$ is invariant under a one-parameter subgroup of $S O(1,2)$ stabilizing e_{-}. On the chosen basis this group acts as follows:

$$
\left\{\begin{array}{l}
e_{-} \mapsto e_{-} \tag{14}\\
e_{+} \mapsto \frac{r^{2}}{2} e_{-}+e_{+}+r e_{3} \quad r \in R \\
e_{3} \mapsto r e_{-}+e_{3}
\end{array}\right.
$$

Going back to $\bigwedge^{2} \mathfrak{h}$ we have $c=\frac{1}{\sqrt{2}}\left(k_{1}+k_{2}\right) \wedge k_{3}=\Omega_{e_{3}, e_{-}} \wedge \Omega_{e_{-}, e_{+}}$.
Before we move on to the next equations, let us note that if $v \in V$ then the action of automorphism generated by v on c is given by: $v(c)=c-\frac{1}{\sqrt{2}} k_{3} v \wedge\left(k_{1}+k_{2}\right)+\frac{1}{\sqrt{2}}\left(k_{1} v+\right.$ $\left.k_{2} v\right) \wedge k_{3}+\frac{1}{\sqrt{2}}\left(k_{1} v+k_{2} v\right) \wedge k_{3} v$. Using appriopriate v we can always assume that $X \neq 0$ and b contains no terms $e_{1} \wedge k_{2}$ and $e_{2} \wedge k_{1}$.

From equations (8) and (9) it follows that $\operatorname{ker} C$ is invariant under X and Y. From equation (7) it follows that ker X is orthogonal to $\operatorname{ker} C$. So $X=\alpha C, \alpha \neq 0$ (since we can choose B with $X \neq 0$ and no terms $e_{1} \otimes e^{2}, e_{2} \otimes e^{1}$).

Since e_{-}is an eigenvector of Y and Y is symmetric and traceless $Y=\left(\begin{array}{ccc}s & b_{1} & -b_{3} \\ 0 & s & 0 \\ 0 & b_{3} & -2 s\end{array}\right)$. From (8) $s=0$ and from (9) $b_{3}=-\alpha$ and since $\alpha \neq 0$ we can use (14) to put $b_{1}=0$. In this way we obtain $B=X+Y+t \mathrm{id}_{V}=\left(\begin{array}{ccc}t & 0 & 2 \alpha \\ 0 & t & 0 \\ 0 & 0 & t\end{array}\right)$ and $b=\sqrt{2} \alpha\left(e_{1}-e_{2}\right) \wedge$ $k_{3}+t\left(e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}\right)$. Using a one-parameter group of automorphisms of \mathfrak{g}
generated by vector e_{3} one can transform this solution to solution with $\alpha=0$. So we have $X=Y=0$.

From equations (10)-(12): $\frac{2}{3} \operatorname{Tr}(A C)=\mu-2 t^{2}, A C=C A, A C+C A=\frac{2}{3} \operatorname{Tr}(A C) \operatorname{id}_{V}$. Since $A C$ is not invertible $\mu=2 t^{2}$ and $\operatorname{Tr}(A C)=0$. It follows that $A=0$.

Using dilations: $(v, X) \mapsto(\lambda v, X), \lambda \in R \backslash\{0\}$ we can assume that $t=0$ or $t=1$. This is solution (I) in our list.

5.2. Solutions for $C=0$

In this case equations (6)-(13) reduce to the following:

$$
\begin{align*}
& \operatorname{Tr}\left(X^{2}\right)-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)+2 t^{2}=\mu \tag{15}\\
& X(Y+t)+(Y+t) X=0 \tag{16}\\
& -4\left(Y^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right) \operatorname{id}_{V}\right)-2(Y X-X Y)+4 t Y=0 \tag{17}\\
& \operatorname{Tr}(X A)=p \tag{18}
\end{align*}
$$

We see that A is any antisymmetric matrix.
5.2.1. Solutions for $X \neq 0$. Let us write equation (17) in the following form:

$$
(X-Y+2 t)(Y+t)=2 t^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)
$$

Since $X \neq 0$ and X is antisymmetric it follows that $2 t^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)=0$ (otherwise multiplying by $(Y+t)^{-1}$ we obtain $X=0$). So for $X \neq 0$ we have the following equations:

$$
\begin{align*}
& \operatorname{Tr}\left(X^{2}\right)=\mu \tag{19}\\
& X(Y+t)+(Y+t) X=0 \tag{20}\\
& (X-Y+2 t)(Y+t)=0 \tag{21}\\
& \operatorname{Tr}\left(Y^{2}\right)=6 t^{2} \tag{22}\\
& \operatorname{Tr}(X A)=p \tag{23}
\end{align*}
$$

- $\operatorname{dim} \operatorname{ker}(Y+t)=3$. Then $Y=0, t=0$ and X is any antisymmetric matrix. These are solutions (IIa-c) for $\rho=0, \alpha \neq 0$. Using dilations one can put $\alpha=1$.
- $\operatorname{dim} \operatorname{ker}(Y+t)=2$. If $\left.\eta\right|_{\operatorname{ker}(Y+t)}$ is nondegenerate then $Y+t$ has non-null eigenvector $v \in(\operatorname{ker}(Y+t))^{\perp}$ with eigenvalue $\lambda \neq 0$. Since $\operatorname{ker}(Y+t)$ is X-invariant we have $X v=0$. From (21) one has $\lambda=3 t \neq 0$. So for $\eta(v, v)>0$ we can choose orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ such that:

$$
X=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -\alpha \\
0 & \alpha & 0
\end{array}\right), Y+t=\left(\begin{array}{ccc}
3 t & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

then $b=3 t e_{1} \wedge k_{1}+\alpha\left(e_{3} \wedge k_{2}-e_{2} \wedge k_{3}\right)$.
After rescaling this is solution (IIb) for $\alpha=1, \rho \neq 0$.
For $\eta(v, v)<0: X=\left(\begin{array}{ccc}0 & \alpha & 0 \\ \alpha & 0 & 0 \\ 0 & 0 & 0\end{array}\right) \quad Y+t=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3 t\end{array}\right)$.
This is solution (IIa) for $\alpha=1, \rho \neq 0$.
If $\left.\eta\right|_{\operatorname{ker}(Y+t)}$ is degenerate one can choose basis $\left(e_{-}, e_{+}, e_{3}\right)$ with $e_{-}, e_{3} \in \operatorname{ker}(Y+t)$.

Now $Y+t=\left(\begin{array}{lll}0 & \beta & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \beta \in R \backslash\{0\}$.
Because Y is traceless $t=0$ and from (21) $X e_{-}=0$ and we obtain the family of solutions:

$$
X=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{ccc}
0 & \beta & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \beta \in R \backslash\{0\}
$$

So $b=\frac{1}{\sqrt{2}}\left(e_{3} \wedge\left(k_{1}+k_{2}\right)+\left(e_{1}-e_{2}\right) \wedge k_{3}\right)+\frac{\beta}{2}\left(e_{1}-e_{2}\right) \wedge\left(k_{1}+k_{2}\right)$. This is solution (IIc) for $\alpha=1, \rho \neq 0$.

We can put $\rho>0$, since automorphisms of \mathfrak{g} which on V are given by $P_{i}(v):=$ $v-\eta_{i i} \eta\left(e_{i}, v\right) e_{i}$, where $\mathrm{i}=1$ for (IIa), $\mathrm{i}=2$ for (IIb) and $\mathrm{i}=3$ for (IIc) transform solutions (α, ρ) to $(\alpha,-\rho)$.

- $\operatorname{dim} \operatorname{ker}(Y+t)=1$. In this case $\operatorname{ker}(Y+t)$ has to be null subspace. Otherwise, since $\operatorname{ker}(Y+t)$ is X invariant, we obtain $X v=0$ for $v \in \operatorname{ker}(Y+t)$. Now $Y+t$ is invertible on v^{\perp} and this subspace is X-invariant. So we obtain $X=0$ from (21). As above, let us choose basis $\left(e_{-}, e_{+}, e_{3}\right), e_{-} \in \operatorname{ker}(Y+t)$. Then $Y+t=\left(\begin{array}{ccc}0 & b_{1} & -b_{3} \\ 0 & 0 & 0 \\ 0 & b_{3} & 3 t\end{array}\right)$.
(a) $e_{-} \in \operatorname{ker} X$.

So $X=\left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. From (20) $t=0$ and since $\operatorname{ker}(Y+t)$ is one-dimensional $b_{3} \neq 0$, so we can use (14) to put $b_{1}=0$. Now from (21) $b_{3}=-1$. This gives us a solution:
$B=X+Y+t \operatorname{id}_{V}=\left(\begin{array}{lll}0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ so $b=\sqrt{2}\left(e_{1}-e_{2}\right) \wedge k_{3}$. This is solution (IIIa).
(b) $X e_{-}=\lambda e_{-}, \lambda \neq 0$

So $X=\left(\begin{array}{ccc}\lambda & 0 & 0 \\ 0 & -\lambda & 0 \\ 0 & 0 & 0\end{array}\right)$. Using (20): $b_{3}=0$, so $b_{1}, t \neq 0$. From (21): $\lambda=-3 t \neq 0$. This gives family of solutions:

$$
B=X+Y+t \mathrm{id}_{V}=\left(\begin{array}{ccc}
-3 t & b_{1} & 0 \\
0 & 3 t & 0 \\
0 & 0 & 3 t
\end{array}\right) \quad \mu=18 t^{2}, t, b_{1} \in R \backslash\{0\}
$$

So $b=\frac{b_{1}}{2} e_{1} \wedge k_{1}+\left(3 t-\frac{b_{1}}{2}\right) e_{2} \wedge k_{1}+\left(3 t+\frac{b_{1}}{2}\right) e_{1} \wedge k_{2}-\frac{b_{1}}{2} e_{2} \wedge k_{2}+3 t e_{3} \wedge k_{3}$. Dividing this by $\frac{b_{1}}{2}$ we obtain solutions (IIIb).

If $\rho>0\left(t b_{1}>0\right)$ we can use (14) to transform this solution to following form:

$$
B=\left(\begin{array}{ccc}
-3 t & 0 & s \\
0 & 3 t & 0 \\
0 & 0 & 3 t
\end{array}\right)
$$

then $b=3 t\left(e_{1} \wedge k_{2}+e_{2} \wedge k_{1}+e_{3} \wedge k_{3}\right)+\frac{s}{\sqrt{2}}\left(e_{1}-e_{2}\right) \wedge k_{3}=b_{z}+z \wedge Z+v \wedge Z$ for $z:=3 t e_{3}, Z:=k_{3}, v:=s e_{-}$. This is the solution given in remark 4.
5.2.2. Solutions for $X=0$. From (15) $\operatorname{Tr}\left(Y^{2}\right)=6 t^{2}-3 \mu$. Substituting this to (17) we obtain the only equation for Y and $t: Y^{2}-t Y+\left(\mu-2 t^{2}\right) \mathrm{id}_{V}=0$

- $Y=0, t \in R, \mu=2 t^{2}$. For $t=0$ we obtain solution five and for $t \neq 0$ (after rescaling) $b=e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}$. It is easy to see, that for every $a \in \bigwedge^{2} V$ there
exist $v \in V$ such that: $v(b)=b+a$. So we can always put in the solution $a=0$. This is solution (IV).
- Suppose $Y \neq 0$.
(a) $Y z=\lambda z$ for some positive z. So Y can be put into diagonal form and it is easy to see that there exists orthonormal basis $\left(e_{1}, e_{2}, e_{3}\right)$ such that $Y+t$ is of one of the following forms:

$$
Y+t=\left(\begin{array}{ccc}
3 t & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { or } Y+t=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 3 t
\end{array}\right) \text { for } t \in R \backslash\{0\} .
$$

In both cases $\mu=0$. These are solutions (IIa) and b for $\alpha=0, \rho \neq 0$.
(b) $Y v=\lambda v$ for some null vector v. Let us choose basis $\left(e_{-}, e_{+}, e_{3}\right)$ such that $e_{-}=v$.

If $\lambda \neq 0$ then the basis can be chosen such that $Y=\left(\begin{array}{ccc}\lambda & b_{1} & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -2 \lambda\end{array}\right)$. Using the equation on Y one can see that $b_{1}=0$ and $\lambda=-t$ so this gives us no new solution.

If $\lambda=0$ than it follows that $b_{3}=0$ and both t and μ are equal to 0 . So we obtain another solution: $Y=\left(\begin{array}{ccc}0 & b_{1} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), b_{1} \in R \backslash\{0\} ; b=\frac{b_{1}}{2}\left(e_{1}-e_{2}\right) \wedge\left(k_{1}+k_{2}\right)$. This is solution (IIc) for $\alpha=0, \rho \neq 0$.

6. Solutions for $\boldsymbol{E}(3)$

From (6) it follows that $C=0$.

6.1. Solutions for $X \neq 0$

- $\operatorname{dim} \operatorname{ker}(Y+t)=3$. So $Y=0, t=0$ and X is any antisymmetric matrix. This is solution (I) for $\rho=0, \alpha \neq 0$.
- $\operatorname{dim} \operatorname{ker}(Y+t)=2$. It follows that $(\operatorname{ker}(Y+t))^{\perp}=\operatorname{ker} X$. In this way one obtains solutions (I) for $\alpha, \rho \neq 0$.
$\bullet \operatorname{dim} \operatorname{ker}(Y+t)=1$. So $\operatorname{ker}(Y+t)=\operatorname{ker} X$ and since $Y+t$ is invertible on $(\operatorname{ker}(Y+t))^{\perp}$, $X=0$ contrary to our assumption, so there is no solution of this type.

6.2. Solutions for $X=0$

In this case, as in $P(3)$ we obtain only one equation for t and $Y: Y^{2}-t Y+\left(\mu-2 t^{2}\right) \mathrm{id}_{V}=0$. It can easily be solved and one obtains solutions (I) for $\alpha=0$, solution (II) and (III).

7. Appendix

We use the following notation: we denote elements of $\bigwedge^{2} \mathfrak{g}$ by small letters and corresponding elements in $\operatorname{End}(V)$ by capital ones.

- $[c, c] \in \bigwedge^{3} \mathfrak{h} \simeq W_{0} \quad[]:, W_{1} \otimes W_{1} \longrightarrow W_{0}$, so it is proportional to F_{0}. Let us choose: $c_{1}=k_{1} \wedge k_{2}$, then $C_{1}=\eta_{11} \eta_{22} k_{3}$. Computing [c_{1}, c_{1}] one has $[C, C]=-\eta_{11} \eta_{22} \eta_{33} F_{0}(C \otimes C)=\eta_{11} \eta_{22} \eta_{33} \operatorname{Tr}\left(C^{2}\right) \mathrm{id}_{V}$.
$\bullet[a, c] \in \bigwedge^{2} V \otimes \mathfrak{h} \simeq W_{0} \oplus W_{1} \oplus W_{2} \quad[]:, W_{1} \otimes W_{1} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$, so $[A, C]=\alpha F_{0}(A \otimes C)+\beta F_{1}(A \otimes C)+\gamma F_{2}(A \otimes C)$. Let us choose $a_{1}=e_{1} \wedge e_{2}, c_{1}$-as
above and $c_{2}=k_{1} \wedge k_{3}$. Then $C_{2}=-\eta_{11} \eta_{33} k_{2}, A_{1}=k_{3}$. We compute: $\left[a_{1}, c_{1}\right]=\eta_{22} e_{1} \wedge$ $e_{3} \wedge k_{2}-\eta_{11} e_{2} \wedge e_{3} \wedge k_{1}$ and $\left[a_{1}, c_{2}\right]=\eta_{22} e_{1} \wedge e_{3} \wedge k_{3}$, and find that $\alpha=-\frac{1}{3}, \beta=\gamma=-\frac{1}{2}$. In this way: $[A, C]=\frac{1}{3} \operatorname{Tr}(A C) \mathrm{id}_{V}+\frac{1}{2}(A C-C A)+\frac{1}{2}\left(A C+C A-\frac{2}{3} \operatorname{Tr}(A C) \mathrm{id}_{V}\right)$.
$\bullet[b, c] \in V \otimes \bigwedge^{2} \mathfrak{h} \simeq W_{0} \oplus W_{1} \oplus W_{2}$. Let $b=t+x+y$ be a decomposition (1). Then $[b, c]=[t, c]+[x, c]+[y, c]$.
(*) $[t, c] \quad[]:, W_{0} \otimes W_{1} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$, so it is proportional to F_{1} and $F_{1}(T \otimes C)=2 T C$. Let us choose c_{1}-as above, $t_{1}=e_{1} \wedge k_{1}+e_{2} \wedge k_{2}+e_{3} \wedge k_{3}$, then $T_{1}=\eta_{11} \eta_{22} \eta_{33} \mathrm{id}_{V}$. Computing $\left[t_{1}, c_{1}\right]$ we obtain 0 , so $[T, C]=0$.
(*) $[x, c] \quad[]:, W_{1} \otimes W_{1} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$. So $[X, C]=\alpha F_{0}(X \otimes C)+\beta F_{1}(X \otimes$ $C)+\gamma F_{2}(X \otimes C)$. Let us choose: c_{1}, c_{2}-as above, $x_{1}=-\eta_{11} e_{2} \wedge k_{1}+\eta_{22} e_{\wedge} k_{2}$, then $X_{1}=\eta_{11} \eta_{22} \eta_{33} k_{3}$. Computing:
$\left[x_{1}, c_{1}\right]=-\eta_{22} \eta_{33} e_{1} \wedge k_{2} \wedge k_{3}+\eta_{11} \eta_{33} e_{2} \wedge k_{1} \wedge k_{3}-2 \eta_{11} \eta_{22} e_{3} \wedge k_{1} \wedge k_{2}$ and $\left[x_{1}, c_{2}\right]=-\eta_{11} \eta_{22} e_{3} \wedge k_{1} \wedge k_{3}$. It follows that $\alpha=-\frac{2}{3}, \beta=-\frac{1}{2}, \gamma=\frac{1}{2}$.
$(*)[y, c] \quad[]:, W_{1} \otimes W_{2} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$. Since the multiplicities of W_{0}, W_{1}, W_{2} in $W_{1} \otimes W_{2}$ are respectively 0,1 and $1,[Y, C]$ is a linear combination of F_{1} and F_{2}.
$[Y, C]=\beta F_{1}(Y \otimes C)+\gamma F_{2}(Y \otimes C)$. Choosing c_{1}-as above, $y_{1}=\eta_{22} e_{3} \wedge k_{2}+\eta_{33} e_{2} \wedge k_{3}$ we have $Y_{1}=\eta_{11} \eta_{22} \eta_{33}\left(\eta_{22} e_{3} \otimes e^{2}+\eta_{33} e_{2} \otimes e^{3}\right)$. Now we compute $\left[y_{1}, c_{1}\right]=\eta_{22} \eta_{33}\left(e_{1} \wedge\right.$ $k_{1} \wedge k_{2}-2 e_{3} \wedge k_{2} \wedge k_{3}$) It follows that $\beta=\frac{3}{2}, \gamma=\frac{1}{2}$.

So $[B, C]=\frac{2}{3} \operatorname{Tr}(X C) \operatorname{id}_{V}+\frac{1}{2}(3(Y C+C Y)-X C+C X)+\frac{1}{2}\left(-X C-C X+\frac{2}{3} \operatorname{Tr}(X C) \mathrm{id}_{V}+\right.$ $Y C-C Y)$.
$\bullet[b, b] \in V \otimes \bigwedge^{2} \mathfrak{h} \simeq W_{0} \oplus W_{1} \oplus W_{2}$.
$[b, b]=[x, x]+2[x, y]+2[x, t]+2[y, t]+[y, y]+[t, t]$.
(*) $[x, x] \quad[]:, W_{1} \otimes W_{1} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$ is a symmetric intertwiner.
So $[X, X]=\alpha F_{0}(X \otimes X)+\gamma F_{2}(X \otimes X)$. Let x_{1} be as above, then $\left[x_{1}, x_{1}\right]=$ $2 \eta_{11} \eta_{22}\left(-\eta_{33} e_{1} \wedge e_{2} \wedge k_{3}+\eta_{22} e_{1} \wedge e_{3} \wedge k_{2}-\eta_{11} e_{2} \wedge e_{3} \wedge k_{1}\right)$. It follows that $\alpha=-1, \gamma=0$.
$(*)[y, y] \quad[]:, W_{2} \otimes W_{2} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$. The multiplicities of W_{0}, W_{1}, W_{2} in $W_{2} \otimes W_{2}$ are equal to 1 . Since the bracket is symmetric: $[Y, Y]=\alpha F_{0}(Y \otimes Y)+\gamma F_{2}(Y \otimes Y)$. Let y_{1} be as above, then $\left[y_{1}, y_{1}\right]=2 \eta_{11} \eta_{33}\left(-\eta_{33} e_{1} \wedge e_{2} \wedge k_{3}+\eta_{22} e_{1} \wedge e_{3} \wedge k_{2}+\eta_{11} e_{2} \wedge e_{3} \wedge k_{1}\right)$. So $\alpha=-\frac{1}{3}, \gamma=-2$.
$(*)[x, y] \quad[]:, W_{1} \otimes W_{2} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$. Since the multiplicities of W_{0}, W_{1}, W_{2} in $W_{1} \otimes W_{2}$ are respectively $0,1,1,[X, Y]$ is a linear combination of F_{1} and F_{2} : $[X, Y]=\beta F_{1}(X \otimes Y)+\gamma F_{2}(X \otimes Y)$. Now we have $\left[x_{1}, y_{1}\right]=2 \eta_{11} \eta_{22} \eta_{33} e_{2} \wedge e_{3} \wedge k_{3}$. It follows that $\beta=\gamma=-1$.
(*) $[t, x] \quad[]:, W_{0} \otimes W_{1} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$, so it is proportional to F_{1} and $F_{1}(T \otimes X)=2 T X$. Computing: $\left[t_{1}, x_{1}\right]=2 \eta_{11} \eta_{22}\left(e_{1} \wedge e_{3} \wedge k_{1}+e_{2} \wedge e_{3} \wedge k_{2}\right)$ we obtain $[X, T]=2 T X$.
(*) $[t, y] \quad[]:, W_{0} \otimes W_{2} \longrightarrow W_{0} \oplus W_{1} \oplus W_{2}$, so it is proportional to F_{2} and $F_{2}(T \otimes Y)=2 T Y$. Computing: $\left[t_{1}, y_{1}\right]=2 \eta_{22} \eta_{33}\left(e_{1} \wedge e_{2} \wedge k_{2}-e_{1} \wedge e_{3} \wedge k_{3}\right)$. So $[T, Y]=2 T Y$.
$(*)[t, t] \quad[]:, W_{0} \otimes W_{0} \longrightarrow W_{0}$, so it is proportional to F_{0}. Computing:
$\left[t_{1}, t_{1}\right]=2\left(\eta_{33} e_{1} \wedge e_{2} \wedge k_{3}-\eta_{22} e_{1} \wedge e_{3} \wedge k_{2}+\eta_{11} e_{2} \wedge e_{3} \wedge k_{1}\right)$ and we obtain $[T, T]=\frac{2}{3} \operatorname{Tr}\left(T^{2}\right) \mathrm{id}_{V}$.

In this way: $[B, B]=\left(\operatorname{Tr}\left(X^{2}\right)-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)+\frac{2}{3} \operatorname{Tr}\left(T^{2}\right)\right) \mathrm{id}_{V}+2(X Y+Y X+X T+T X)+$ $-2\left(2 Y^{2}-\frac{2}{3} \operatorname{Tr}\left(Y^{2}\right) \operatorname{id}_{V}-X Y+Y X-2 T Y\right)$.

- $[a, b] \in \bigwedge^{3} V \simeq W_{0}$.
$\begin{array}{ll}(*)[a, y] & {[,]: W_{1} \otimes W_{2} \longrightarrow W_{0} . \text { So it is equal to } 0 .} \\ (*)[a, t] & {[,]: W_{1} \otimes W_{0} \longrightarrow W_{0} . \text { So it is equal to } 0 .} \\ (*)[a, x] & {[,]: W_{1} \otimes W_{1} \longrightarrow W_{0} . \text { So it is proportional to } F_{0} \text {. We compute: }}\end{array}$
$\left[a_{1}, x_{1}\right]=-2 \eta_{11} \eta_{22} e_{1} \wedge e_{2} \wedge e_{3}$ and obtain $[A, X]=\eta_{11} \eta_{22} \eta_{33} \operatorname{Tr}(A X) \mathrm{id}_{V}$.
So $[A, B]=\eta_{11} \eta_{22} \eta_{33} \operatorname{Tr}(A B) \mathrm{id}_{V}=\eta_{11} \eta_{22} \eta_{33} \operatorname{Tr}(A X) \mathrm{id}_{V}$.
Putting all of the results together we obtain the following system of equations on $\operatorname{End}(V)$ equivalent to equation (4) and (5).

```
\(\operatorname{Tr}\left(C^{2}\right)=0\)
\(\operatorname{Tr}(X C)=0\)
\(X C-C X+3(Y C+C Y)=0\)
\((-X C-C X)+(Y C-C Y)=0\)
\(\frac{2}{3} \operatorname{Tr}(C A)+\operatorname{Tr}\left(X^{2}\right)-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)+2 t^{2}=\mu\)
\(-(C A-A C)+2(X Y+Y X)+4 t X=0\)
\(C A+A C-\frac{2}{3} \operatorname{Tr}(C A) \mathrm{id}_{V}-4\left(Y^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right) \mathrm{id}_{V}\right)-2(Y X-X Y)+4 t Y=0\)
\(\operatorname{Tr}(X A)=p\).
\(\operatorname{Tr}\left(C^{2}\right)=0\)
\(X C-C X+3(Y C+C Y)=0\)
\((-X C-C X)+(Y C-C Y)=0\)
\(\frac{2}{3} \operatorname{Tr}(C A)+\operatorname{Tr}\left(X^{2}\right)-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right)+2 t^{2}=\mu\)
\(C A+A C-\frac{2}{3} \operatorname{Tr}(C A) \operatorname{id}_{V}-4\left(Y^{2}-\frac{1}{3} \operatorname{Tr}\left(Y^{2}\right) \operatorname{id}_{V}\right)-2(Y X-X Y)+4 t Y=0\)
\(\operatorname{Tr}(X A)=p\).
\(A^{t}=-A, C^{t}=-C, X^{t}=-X, Y^{t}=Y, \operatorname{Tr}(Y)=0, T=: t \mathrm{id}_{V}\).
```


Acknowledgment

The research was supported by Polish KBN grant no 2 P301 02007.

References

[1] Zakrzewski S 1997 Poisson structures on the Poincaré group Commun. Math. Phys. 185 285-311
[2] Grabowski J and Urbański P 1995 Tangent lifts of Poisson and related structures J. Phys. A: Math. Gen. 28 6743-77
[3] Zakrzewski S 1995 Poisson homogenous spaces Quantum Groups. Formalism and Applications. Proc. XXX Winter School on Theoretical Physics (Karpacz 1994) ed J Lukierski, Z Popowicza and J Sobczyk (Warsaw: PNW) also Preprint hep-th/9412101
[4] Zakrzewski S 1990 On relation between Poisson groups and quantum groups Quantum Group Proc., Leningrad 1990 (Lecture Notes in Mathematics Vol 1510) ed P P Kulish pp 326-34
[5] Stachura P Double Lie algebras and Manin triples Preprint q-alg/9712040

