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Poisson–Lie structures on Poincaŕe and Euclidean groups
in three dimensions

Piotr Stachura†
Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw,
Poland

Received 30 June 1997, in final form 9 December 1997

Abstract. The complete list of Poisson–Lie structures on Poincaré and Euclidean groups in
three dimensions is presented. Some new solutions for inhomogenousSO(p, q) are given.

1. Introduction

The problem of classification of Poisson–Lie structures on inhomogenousSO(p, q) groups
(i.e. the semidirect product ofSO(p, q) andRp+q , where the action is given by fundamental
representation) is not yet solved in general. It was investigated in [1] where it was shown
that all Poisson–Lie structures on these groups (forp + q > 2) are coboundary. Also a
number of solutions were presented, especially for inhomogenousSO(1, 3) but even for
this group it is not known whether other solutions exist. If we think of Poisson–Lie groups
as ‘classical limits’ of quantum groups, it is reasonable, as a first step to find quantum
deformations, to study the possible Poisson–Lie structures on a given group and then select
those which can be ‘quantized’ on theC∗-algebra level [4]. In this paper we give the
complete list of bialgebra structures on inhomogenousso(3) and so(1, 2) algebras. The
structures were found ‘by force’ so the paper is rather technical. Nevertheless we were
able to find a new solution for any dimension. These solutions come from the general
construction which will be described elsewhere [5] and are presented in the remarks within
section 3.

2. Basic definitions and notation

Let (V , η) be a three-dimensional, real vector space with symmetric, nondegenerate, bilinear
form η. In fact, we have two situations: either the signature ofη is (3, 0)—this corresponds
to the Euclidean group or the signature is(1, 2)—this corresponds to the Poincaré Group. By
η we also denote isomorphismV ' V ∗ given by: ηx(y) := η(x, y). At is the transposition
defined byη : η(Ax, y) =: η(x,Aty). Let H := SO(η) be the special orthogonal group
and h := so(η) its Lie algebra.H acts onV by fundamental representation. LetG be a
semidirect product defined by this action andg its Lie algebra.

We use the following natural isomorphisms intertwining with the corresponding
representations ofH . �: V ∧ V → h: �x,y := �(x ∧ y) := x ⊗ η(y) − y ⊗ η(x).
For any orthonormal basis(e1, e2, e3) we denote:k1 := �e2,e3, k2 := �e3,e1, k3 := �e1,e2.
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Note that� viewed as an element of(
∧2

V )∗ ⊗ h '∧2
V ⊗ h ⊂∧3

g is G-invariant [1].
In any basis:

� = ηijηklej ∧ ek ⊗�jl
π : V ∧ V → V : η(π(x ∧ y))(z) := Vol(x ∧ y ∧ z)

where Vol is volume form onV determined (up to a sign) byη. In any orthonormal,
oriented basis:π(ei ∧ ej ) = 6kεijkηiiηjj ek.

These two isomorphisms provide us with further identifications:

V ⊗ h ' V ⊗ V ' V ⊗ V ∗ ' End(V ), ei ⊗ kj 7→ η11η22η33ei ⊗ ej .
2∧
V ⊗ h ' V ⊗ h ' End(V ), ei ∧ ej ⊗ kl 7→ 6kεijkηkkek ⊗ el.

V ⊗
2∧

h ' V ⊗
2∧
V ' V ⊗ h ' End(V ), ei ⊗ kj ∧ kl 7→ 6kεjlkηkkei ⊗ ek.

For any orthonormal basis(e1, e2, e3) we denote:e− := 1√
2
(e1− e2), e+ := 1√

2
(e1+ e2).

H acts on End(V ) by conjugation and results in the decomposition into irreducible
subspaces:

End(V ) = W0⊕W1⊕W2 (1)

where:W0 := {λidV : λ ∈ R}, W1 := h, W2 := {a ∈ End(V ) : at = a and Tr(a) = 0}.
It is known that Poisson–Lie structures onG are coboundary [1], i.e. are given by

some elementr ∈ ∧2
g satisfying equation [r, r] ∈ (∧3

g)inv (where [r, r] is the Schouten
bracket).

Note the following lemma.

Lemma 1.(
∧3

g)inv is two-dimensional and is spanned by elements:� ∈ ∧2
V ⊗ h and

η̃ := e1 ∧ e2 ∧ e3 ∈
∧3

V.

Proof.
3∧

g =
( 3∧

V

)
⊕
( 2∧

V ⊗ h

)
⊕
(
V ⊗

2∧
h

)
⊕
( 3∧

h

)
. (2)

This decomposition isH -invariant and we have the followingH -invariant subspaces:∧3
V—this is one dimensionalH -invariant subspace;∧2
V ⊗ h ' End(V ) = W0 ⊕W1 ⊕W2—so the onlyH -invariants elements are in the

image ofW0 and this is subspace spanned by�;

V ⊗
2∧

h ' End(V ) = W0⊕W1⊕W2

so as above the onlyH -invariants elements are in the image ofW0.∧3
h—this is a one-dimensionalH -invariant subspace

One can check that only the first two subspaces areV -invariant. �

Let r = a + b + c be a decomposition corresponding to:
2∧

g =
( 2∧

V

)
⊕
(
V ⊗ h

)
⊕
( 2∧

h

)
(3)

then [r, r] = 2[a, b]+ (2[a, c]+ [b, b])+2[b, c]+ [c, c] is the decomposition corresponding
to (2). From the lemma above it follows that we have to solve equations:

[a, b] = pη̃ 2[a, c] + [b, b] = µ� p,µ ∈ R (4)

[b, c] = 0 [c, c] = 0. (5)
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3. Results

The main results of this paper are shown in the following complete list of solutions (up to
automorphisms ofg) of equations (4) and (5) forP(3) andE(3).

3.1. Poisson structures on P(3)

(I) c = 1√
2
(k1+ k2) ∧ k3, b = α(e1 ∧ k1+ e2 ∧ k2+ e3 ∧ k3), a = 0

α = 0, 1, µ = 2α2, p = 0.
In the remaining casesc = 0.

(IIa) b = ρe3 ∧ k3+ α(e2 ∧ k1+ e1 ∧ k2), a ∈
∧2

V

ρ > 0, α = 0, 1, α2+ ρ2 6= 0, µ = −2α2, p ∈ R.
(IIb) b = ρe1 ∧ k1+ α(e3 ∧ k2− e2 ∧ k3), a ∈

∧2
V

ρ > 0, α = 0, 1, α2+ ρ2 6= 0, µ = 2α2, p ∈ R.
(IIc) b = α 1√

2
(e3 ∧ (k1+ k2)+ (e1− e2) ∧ k3)+ ρ(e1− e2) ∧ (k1+ k2), a ∈

∧2
V

α = 0, 1, ρ > 0, α2+ ρ2 6= 0, µ = 0, p ∈ R.
(IIIa) b = 1√

2
(e1− e2) ∧ k3, a ∈∧2

V

µ = 0, p ∈ R.
(IIIb) b = e1 ∧ k1+ (ρ − 1)e2 ∧ k1+ (ρ + 1)e1 ∧ k2− e2 ∧ k2+ ρe3 ∧ k3, a ∈∧2

V

ρ ∈ R \ {0}, µ = 2ρ2, p ∈ R.
(IV) b = e1 ∧ k1+ e2 ∧ k2+ e3 ∧ k3, a = 0
µ = 2, p = 0.
(V) b = 0, a ∈∧2

V

µ = 0, p = 0.

3.2. Poisson structures on E(3)

In all casesc = 0.
(I) b = α(e1 ∧ k2 − e2 ∧ k1) + ρe3 ∧ k3, a ∈ ∧2

V α = 0, 1, ρ > 0, α2 + ρ2 6= 0,
µ = −2α2, p ∈ R.

(II) b = e1 ∧ k1+ e2 ∧ k2+ e3 ∧ k3, a = 0. µ = 2, p = 0.
(III) b = 0, a ∈∧2

V . µ = 0, p = 0.
We can still use automorphisms ofg generated by some vectors fromV to restrict the

possible forms ofa.
For P(3):
(IIa) Using a two-parameter group of automorphisms ofg generated bye1 ande2 we can

transform this solution to solutions with:a = a3e1∧e2 for α 6= ρ or a = a3e1∧e2+a−e3∧e−
for α = ρ. After such transformationp = −2a3α, N = 2 (N denotes the number of
parameters in the solution).

(IIb) Here we usee2 ande3 and obtaina = a1e2∧ e3. In this casep = −2a1α,N = 2.
(IIc) Now usinge+ ande3 we obtaina = a+e3 ∧ e+; p = 2a+, N = 2.
(IIIa) Using e− ande+ we obtaina = a+e3 ∧ e+ + a−e3 ∧ e−, p = a+, N = 2.
(IIIb) As above, usinge− and e+ we obtaina = a3e1 ∧ e2 + a+e3 ∧ e+, p = −2ρa3,

N = 3.
(V) Using isomorphism

∧2
V ' V and dilations we can assume thata is of one of the

following forms: e2 ∧ e3, e1 ∧ e2, e3 ∧ e−, N = 0.
For E(3):
(I) Using e1 ande2 we can always put:a = a3e1 ∧ e2, p = −2αa3, N = 2.
(III) Using isomorphism

∧2
V ' V and dilations we can assume thata = e1∧e2, N = 0.
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Remark 1.Above we indicate the value ofp sincep = 0 is a necessary and sufficient
condition for the existence of Poisson Minkowski space. [3]

Remark 2.Solutions (IV) forP(3) and (II) forE(3) are directly connected to the dimension
three and have no counterparts in higher dimension.

Remark 3.Solutions (II) forP(3) and (I) forE(3) are of the well known form [1] valid for
arbitrary inhomogenousso(p, q). Namely, for eachz ∈ V let b := bz := ηjkej⊗�z,ek . Then
[b, b] = −η(z, z)� and these are solutions (IIa–c) forα = 0 and wherez is respectively
positive, negative and null vector.

Also if b := bz + z ∧ Z whereZ ∈ h such thatZz = 0. Then [z ∧ Z, z ∧ Z] =
[bz, z ∧ Z] = 0 and again [b, b] = −η(z, z)�. Solutions (IIa–c) forα = 1 correspond
respectively toz := e3, Z := ρk3, z := e1, Z := ρk1, z := e−, Z := √2ρ(k1 + k2) and
solution (I) forE(3) corresponds toz := e3, Z := ρk3.

Note also that these solutions (withρ = 0) are tangent lifts of Poisson structure [2] on
SO(1, 2) and SO(3) if we identify P(3) andE(3) with tangent groups:T SO(1, 2) and
T SO(3).

Remark 4.Solution (III) forP(3) can also be written in a form which gives us new solutions
for so(p, q).

(IIIa) Let b := bz+z∧Z+v∧Z wherev is such that:Zv = −z (it follows thatz must
be a null vector). We compute the brackets: [v∧Z, v∧Z] = −2v∧z∧Z, [v∧Z, z∧Z] = 0,
[v∧Z, bz] = v∧z∧Z. So [b, b] = [bz+z∧Z, bz+z∧Z] = 0. Solution (IIIa) corresponds
to: z := e−, Z := 1√

2
(k1+ k2), v := −(e− + e3).

More generally: letb := bz +
∑

i (z + vi) ∧ Zi , whereZiz = 0, Zivj = −δij z,
[Zi, Zj ] = 0. Then [b, b] = [bz, bz]. For example if h = so(1, n) one can take:
z := e1− en+1, vi := ei , Zi := �1,i +�i,n+1, i = 2, . . . , n.

(IIIb) Let b be as above, but now we choosev such that:Zv = v. Then [b, b] =
[bz+ z∧Z, bz+ z∧Z]+2[v∧Z, bz+ z∧Z]+ [v∧Z, v∧Z]. Now [v∧Z, v∧Z] = 0 and
[v∧Z, bz] = v∧Z(bz)−Z∧v(bz) = v∧bZz−Z∧ (−v∧ z) = v∧ z∧Z, [v∧Z, z∧Z] =
−Z ∧ Zv ∧ z = −v ∧ z ∧ Z. So we have [b, b] = [bz + z ∧ Z, bz + z ∧ Z] = −η(z, z)�.
These are solutions (IIIb) forρ > 0 (section 5.2.1).

4. Computation of the Schouten bracket[r, r].

To solve equations (4) and (5) we compute the bracket [r, r] explicitly using identifications
from section 1 and the fact that the bracket intertwines the corresponding representations
of h. We obtain a system of equations on End(V ).

Let us define mappings End(V )⊗ End(V ) −→ End(V ):
F0(a⊗ b) := Tr(atb)idV , thenF0(a⊗ b) = F0(b⊗ a) andF0 intertwines representation

on End(V )⊗ End(V ) with trivial representation onW0.
F1(a⊗b) := atb−bta, thenF1(a⊗b) = −F1(b⊗a) andF1 intertwines representation

on End(V )⊗ End(V ) with representation onW1.
F2(a ⊗ b) := atb+ bta − 2

3 Tr(atb)idV thenF2(a ⊗ b) = F2(b⊗ a) andF2 intertwines
representation on End(V )⊗ End(V ) with representation onW2.

r = a + b + c ∈ (∧2
V )⊕ (V ⊗ h)⊕ (∧2

h) ' W1⊕ End(V )⊕W1

Let b = x + y + t ∈ W2⊕W1⊕W0 be the decomposition (1).
Then [r, r] = 2[b, a] + 2[c, a] + [b, b] + 2[b, c] + [c, c] = 2([x, a] + [y, a] + [t, a])+

2[c, a]+([x, x]+[y, y]+[t, t ]+2[x, y]+2[x, t ]+2[y, t ])+2([x, c]+[y, c]+[t, c])+[c, c].
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Next, each term is computed separately and brackets are expressed as combinations of
F0, F1, F2. The detailed computations are given in the appendix. It results that the equations
(4) and (5) are equivalent to the following system of equations on End(V ).

Tr(C2) = 0 (6)

Tr(XC) = 0 (7)

XC − CX + 3(YC + CY) = 0 (8)

(−XC − CX)+ (YC − CY) = 0 (9)
2
3 Tr(CA)+ Tr(X2)− 1

3 Tr(Y 2)+ 2t2 = µ (10)

−(CA− AC)+ 2(XY + YX)+ 4tX = 0 (11)

CA+ AC − 2
3 Tr(CA)idV − 4(Y 2− 1

3 Tr(Y 2)idV )− 2(YX −XY)+ 4tY = 0 (12)

Tr(XA) = p (13)

At = −A, Ct = −C, Xt = −X, Y t = Y , Tr(Y ) = 0, T =: t idV .
Capital lettersA,C,X, Y, T denote elements of End(V ) corresponding to the terms denoted
by small letters in decomposition ofr.

5. Solutions forP (3)

5.1. Solutions forC 6= 0

Equation (6) means thatC is antisymmetric with null kernel so one can choose a basis

(e−, e+, e3) such thatC =
( 0 0 1

0 0 0
0 1 0

)
. C is invariant under a one-parameter subgroup of

SO(1, 2) stabilizinge−. On the chosen basis this group acts as follows:
e− 7→ e−

e+ 7→ r2

2
e− + e+ + re3 r ∈ R

e3 7→ re− + e3

. (14)

Going back to
∧2

h we havec = 1√
2
(k1+ k2) ∧ k3 = �e3,e− ∧�e−,e+ .

Before we move on to the next equations, let us note that ifv ∈ V then the action of
automorphism generated byv on c is given by: v(c) = c − 1√

2
k3v ∧ (k1+ k2)+ 1√

2
(k1v +

k2v) ∧ k3 + 1√
2
(k1v + k2v) ∧ k3v. Using appriopriatev we can always assume thatX 6= 0

andb contains no termse1 ∧ k2 ande2 ∧ k1.
From equations (8) and (9) it follows that kerC is invariant underX and Y . From

equation (7) it follows that kerX is orthogonal to kerC. SoX = αC, α 6= 0 (since we can
chooseB with X 6= 0 and no termse1⊗ e2, e2⊗ e1).

Sincee− is an eigenvector ofY andY is symmetric and tracelessY =
(
s b1 −b3

0 s 0
0 b3 −2s

)
.

From (8)s = 0 and from (9)b3 = −α and sinceα 6= 0 we can use (14) to putb1 = 0.

In this way we obtainB = X + Y + t idV =
(
t 0 2α
0 t 0
0 0 t

)
andb = √2α(e1 − e2) ∧

k3 + t (e1 ∧ k1 + e2 ∧ k2 + e3 ∧ k3). Using a one-parameter group of automorphisms ofg
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generated by vectore3 one can transform this solution to solution withα = 0. So we have
X = Y = 0.

From equations (10)–(12):23 Tr(AC) = µ−2t2, AC = CA, AC+CA = 2
3 Tr(AC)idV .

SinceAC is not invertibleµ = 2t2 and Tr(AC) = 0. It follows thatA = 0.
Using dilations: (v,X) 7→ (λv,X), λ ∈ R \ {0} we can assume thatt = 0 or t = 1.

This is solution (I) in our list.

5.2. Solutions forC = 0

In this case equations (6)–(13) reduce to the following:

Tr(X2)− 1
3 Tr(Y 2)+ 2t2 = µ (15)

X(Y + t)+ (Y + t)X = 0 (16)

−4(Y 2− 1
3 Tr(Y 2)idV )− 2(YX −XY)+ 4tY = 0 (17)

Tr(XA) = p. (18)

We see thatA is any antisymmetric matrix.

5.2.1. Solutions forX 6= 0. Let us write equation (17) in the following form:

(X − Y + 2t)(Y + t) = 2t2− 1

3
Tr(Y 2).

Since X 6= 0 and X is antisymmetric it follows that 2t2 − 1
3 Tr(Y 2) = 0 (otherwise

multiplying by (Y + t)−1 we obtainX = 0). So for X 6= 0 we have the following
equations:

Tr(X2) = µ (19)

X(Y + t)+ (Y + t)X = 0 (20)

(X − Y + 2t)(Y + t) = 0 (21)

Tr(Y 2) = 6t2 (22)

Tr(XA) = p. (23)

• dim ker(Y + t) = 3. ThenY = 0, t = 0 andX is any antisymmetric matrix. These
are solutions (IIa–c) forρ = 0, α 6= 0. Using dilations one can putα = 1.
• dim ker(Y + t) = 2. If η|ker(Y+t) is nondegenerate thenY + t has non-null eigenvector

v ∈ (ker(Y + t))⊥ with eigenvalueλ 6= 0. Since ker(Y + t) is X-invariant we haveXv = 0.
From (21) one hasλ = 3t 6= 0. So for η(v, v) > 0 we can choose orthonormal basis
(e1, e2, e3) such that:

X =
( 0 0 0

0 0 −α
0 α 0

)
, Y + t =

( 3t 0 0
0 0 0
0 0 0

)
thenb = 3te1 ∧ k1+ α(e3 ∧ k2− e2 ∧ k3).

After rescaling this is solution (IIb) forα = 1, ρ 6= 0.

For η(v, v) < 0: X =
( 0 α 0
α 0 0
0 0 0

)
Y + t =

( 0 0 0
0 0 0
0 0 3t

)
.

This is solution (IIa) forα = 1, ρ 6= 0.
If η|ker(Y+t) is degenerate one can choose basis(e−, e+, e3) with e−, e3 ∈ ker(Y + t).



3D Poisson–Lie structures on Poincar´e and Euclidean groups 4561

Now Y + t =
( 0 β 0

0 0 0
0 0 0

)
, β ∈ R \ {0}.

BecauseY is tracelesst = 0 and from (21)Xe− = 0 and we obtain the family of
solutions:

X =
( 0 0 1

0 0 0
0 1 0

)
Y =

( 0 β 0
0 0 0
0 0 0

)
β ∈ R \ {0}.

So b = 1√
2
(e3 ∧ (k1+ k2)+ (e1− e2) ∧ k3)+ β

2 (e1− e2) ∧ (k1+ k2). This is solution (IIc)
for α = 1, ρ 6= 0.

We can putρ > 0, since automorphisms ofg which on V are given byPi(v) :=
v−ηiiη(ei, v)ei , where i= 1 for (IIa), i = 2 for (IIb) and i= 3 for (IIc) transform solutions
(α, ρ) to (α, −ρ).
• dim ker(Y + t) = 1. In this case ker(Y + t) has to be null subspace. Otherwise, since

ker(Y + t) is X invariant, we obtainXv = 0 for v ∈ ker(Y + t). Now Y + t is invertible
on v⊥ and this subspace isX-invariant. So we obtainX = 0 from (21). As above, let us

choose basis(e−, e+, e3), e− ∈ ker(Y + t). ThenY + t =
( 0 b1 −b3

0 0 0
0 b3 3t

)
.

(a) e− ∈ kerX.

SoX =
( 0 0 1

0 0 0
0 1 0

)
. From (20)t = 0 and since ker(Y + t) is one-dimensionalb3 6= 0,

so we can use (14) to putb1 = 0. Now from (21)b3 = −1. This gives us a solution:

B = X + Y + t idV =
( 0 0 2

0 0 0
0 0 0

)
so b = √2(e1− e2) ∧ k3. This is solution (IIIa).

(b) Xe− = λe−, λ 6= 0

SoX =
(
λ 0 0
0 −λ 0
0 0 0

)
. Using (20): b3 = 0, sob1, t 6= 0. From (21):λ = −3t 6= 0.

This gives family of solutions:

B = X + Y + t idV =
(−3t b1 0

0 3t 0
0 0 3t

)
µ = 18t2, t, b1 ∈ R \ {0}.

Sob = b1
2 e1∧ k1+ (3t − b1

2 )e2∧ k1+ (3t + b1
2 )e1∧ k2− b1

2 e2∧ k2+ 3te3∧ k3. Dividing
this by b1

2 we obtain solutions (IIIb).
If ρ > 0(tb1 > 0) we can use (14) to transform this solution to the following form:

B =
(−3t 0 s

0 3t 0
0 0 3t

)
then b = 3t (e1 ∧ k2 + e2 ∧ k1 + e3 ∧ k3) + s√

2
(e1 − e2) ∧ k3 = bz + z ∧ Z + v ∧ Z for

z := 3te3, Z := k3, v := se−. This is the solution given in remark 4.

5.2.2. Solutions forX = 0. From (15) Tr(Y 2) = 6t2 − 3µ. Substituting this to (17) we
obtain the only equation forY and t : Y 2− tY + (µ− 2t2)idV = 0
• Y = 0, t ∈ R, µ = 2t2. For t = 0 we obtain solution five and fort 6= 0 (after

rescaling)b = e1 ∧ k1 + e2 ∧ k2 + e3 ∧ k3. It is easy to see, that for everya ∈ ∧2
V there



4562 P Stachura

exist v ∈ V such that:v(b) = b + a. So we can always put in the solutiona = 0. This is
solution (IV).
• SupposeY 6= 0.
(a) Yz = λz for some positivez. SoY can be put into diagonal form and it is easy to

see that there exists orthonormal basis(e1, e2, e3) such thatY + t is of one of the following
forms:

Y + t =
( 3t 0 0

0 0 0
0 0 0

)
or Y + t =

( 0 0 0
0 0 0
0 0 3t

)
for t ∈ R \ {0}.

In both casesµ = 0. These are solutions (IIa) and b forα = 0, ρ 6= 0.
(b) Yv = λv for some null vectorv. Let us choose basis(e−, e+, e3) such thate− = v.

If λ 6= 0 then the basis can be chosen such thatY =
(
λ b1 0
0 λ 0
0 0 −2λ

)
. Using the

equation onY one can see thatb1 = 0 andλ = −t so this gives us no new solution.
If λ = 0 than it follows thatb3 = 0 and botht andµ are equal to 0. So we obtain

another solution:Y =
( 0 b1 0

0 0 0
0 0 0

)
, b1 ∈ R \ {0}; b = b1

2 (e1 − e2) ∧ (k1 + k2). This is

solution (IIc) forα = 0, ρ 6= 0.

6. Solutions forE(3)

From (6) it follows thatC = 0.

6.1. Solutions forX 6= 0

• dim ker(Y + t) = 3. SoY = 0, t = 0 andX is any antisymmetric matrix. This is
solution (I) for ρ = 0, α 6= 0.
• dim ker(Y + t) = 2. It follows that (ker(Y + t))⊥ = kerX. In this way one obtains

solutions (I) forα, ρ 6= 0.
• dim ker(Y+t) = 1. So ker(Y+t) = kerX and sinceY+t is invertible on(ker(Y+t))⊥,

X = 0 contrary to our assumption, so there is no solution of this type.

6.2. Solutions forX = 0

In this case, as inP(3) we obtain only one equation fort andY : Y 2−tY+(µ−2t2)idV = 0.
It can easily be solved and one obtains solutions (I) forα = 0, solution (II) and (III).

7. Appendix

We use the following notation: we denote elements of
∧2

g by small letters and
corresponding elements in End(V ) by capital ones.
• [c, c] ∈ ∧3

h ' W0 [ , ] : W1 ⊗ W1 −→ W0, so it is proportional to
F0. Let us choose:c1 = k1 ∧ k2, then C1 = η11η22k3. Computing [c1, c1] one has
[C,C] = −η11η22η33F0(C ⊗ C) = η11η22η33 Tr(C2)idV .
• [a, c] ∈ ∧2

V ⊗ h ' W0 ⊕ W1 ⊕ W2 [ , ] : W1 ⊗ W1 −→ W0 ⊕ W1 ⊕ W2, so
[A,C] = αF0(A⊗ C)+ βF1(A⊗ C)+ γF2(A⊗ C). Let us choosea1 = e1 ∧ e2, c1—as
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above andc2 = k1 ∧ k3. ThenC2 = −η11η33k2, A1 = k3. We compute: [a1, c1] = η22e1 ∧
e3∧ k2−η11e2∧ e3∧ k1 and [a1, c2] = η22e1∧ e3∧ k3, and find thatα = − 1

3, β = γ = − 1
2.

In this way: [A,C] = 1
3 Tr(AC)idV + 1

2(AC − CA)+ 1
2(AC + CA− 2

3 Tr(AC)idV ).

• [b, c] ∈ V ⊗∧2
h ' W0⊕W1⊕W2. Let b = t + x+ y be a decomposition (1). Then

[b, c] = [t, c] + [x, c] + [y, c].
(∗) [t, c] [ , ] : W0 ⊗ W1 −→ W0 ⊕ W1 ⊕ W2, so it is proportional toF1 and

F1(T ⊗ C) = 2T C. Let us choosec1—as above,t1 = e1 ∧ k1 + e2 ∧ k2 + e3 ∧ k3, then
T1 = η11η22η33idV . Computing [t1, c1] we obtain 0, so [T ,C] = 0.

(∗) [x, c] [, ] : W1⊗W1 −→ W0⊕W1⊕W2. So [X,C] = αF0(X⊗C)+βF1(X⊗
C) + γF2(X ⊗ C). Let us choose:c1, c2—as above,x1 = −η11e2 ∧ k1 + η22e∧k2, then
X1 = η11η22η33k3. Computing:

[x1, c1] = −η22η33e1 ∧ k2 ∧ k3 + η11η33e2 ∧ k1 ∧ k3 − 2η11η22e3 ∧ k1 ∧ k2 and
[x1, c2] = −η11η22e3 ∧ k1 ∧ k3. It follows thatα = − 2

3, β = − 1
2, γ = 1

2.
(∗) [y, c] [ , ] : W1⊗W2 −→ W0⊕W1⊕W2. Since the multiplicities ofW0, W1,

W2 in W1⊗W2 are respectively 0,1 and 1, [Y,C] is a linear combination ofF1 andF2.
[Y,C] = βF1(Y⊗C)+γF2(Y⊗C). Choosingc1—as above,y1 = η22e3∧k2+η33e2∧k3

we haveY1 = η11η22η33(η22e3⊗ e2+ η33e2⊗ e3). Now we compute [y1, c1] = η22η33(e1 ∧
k1 ∧ k2− 2e3 ∧ k2 ∧ k3) It follows thatβ = 3

2, γ = 1
2.

So [B,C] = 2
3 Tr(XC)idV+ 1

2(3(YC+CY)−XC+CX)+ 1
2(−XC−CX+ 2

3 Tr(XC)idV+
YC − CY).
• [b, b] ∈ V ⊗∧2

h ' W0⊕W1⊕W2.
[b, b] = [x, x] + 2[x, y] + 2[x, t ] + 2[y, t ] + [y, y] + [t, t ].
(∗) [x, x] [, ] : W1⊗W1 −→ W0⊕W1⊕W2 is a symmetric intertwiner.
So [X,X] = αF0(X ⊗ X) + γF2(X ⊗ X). Let x1 be as above, then [x1, x1] =

2η11η22(−η33e1∧ e2∧k3+η22e1∧ e3∧k2−η11e2∧ e3∧k1). It follows thatα = −1, γ = 0.
(∗) [y, y] [, ] : W2⊗W2 −→ W0⊕W1⊕W2. The multiplicities ofW0, W1, W2 in

W2⊗W2 are equal to 1. Since the bracket is symmetric: [Y, Y ] = αF0(Y⊗Y )+γF2(Y⊗Y ).
Let y1 be as above, then [y1, y1] = 2η11η33(−η33e1∧e2∧k3+η22e1∧e3∧k2+η11e2∧e3∧k1).
Soα = − 1

3, γ = −2.
(∗) [x, y] [ , ] : W1 ⊗ W2 −→ W0 ⊕ W1 ⊕ W2. Since the multiplicities ofW0,

W1, W2 in W1 ⊗W2 are respectively 0,1, 1, [X, Y ] is a linear combination ofF1 andF2:
[X, Y ] = βF1(X ⊗ Y )+ γF2(X ⊗ Y ). Now we have [x1, y1] = 2η11η22η33e2 ∧ e3 ∧ k3. It
follows thatβ = γ = −1.

(∗) [t, x] [ , ] : W0 ⊗ W1 −→ W0 ⊕ W1 ⊕ W2, so it is proportional toF1 and
F1(T ⊗ X) = 2TX. Computing: [t1, x1] = 2η11η22(e1 ∧ e3 ∧ k1 + e2 ∧ e3 ∧ k2) we obtain
[X, T ] = 2TX.

(∗) [t, y] [ , ] : W0 ⊗ W2 −→ W0 ⊕ W1 ⊕ W2, so it is proportional toF2 and
F2(T ⊗ Y ) = 2T Y . Computing: [t1, y1] = 2η22η33(e1 ∧ e2 ∧ k2 − e1 ∧ e3 ∧ k3). So
[T , Y ] = 2T Y .

(∗) [t, t ] [ , ] : W0⊗W0 −→ W0, so it is proportional toF0. Computing:
[t1, t1] = 2(η33e1 ∧ e2 ∧ k3 − η22e1 ∧ e3 ∧ k2 + η11e2 ∧ e3 ∧ k1) and we obtain

[T , T ] = 2
3 Tr(T 2)idV .

In this way: [B,B] = (Tr(X2)− 1
3 Tr(Y 2)+ 2

3 Tr(T 2))idV +2(XY +YX+XT +TX)+
−2(2Y 2− 2

3 Tr(Y 2)idV −XY + YX − 2T Y ).

• [a, b] ∈∧3
V ' W0.

(∗) [a, y] [ , ] : W1⊗W2 −→ W0. So it is equal to 0.
(∗) [a, t ] [ , ] : W1⊗W0 −→ W0. So it is equal to 0.
(∗) [a, x] [ , ] : W1⊗W1 −→ W0. So it is proportional toF0. We compute:
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[a1, x1] = −2η11η22e1 ∧ e2 ∧ e3 and obtain [A,X] = η11η22η33 Tr(AX)idV .
So [A,B] = η11η22η33 Tr(AB)idV = η11η22η33 Tr(AX)idV .

Putting all of the results together we obtain the following system of equations on End(V )

equivalent to equation (4) and (5).

Tr(C2) = 0 (24)

Tr(XC) = 0 (25)

XC − CX + 3(YC + CY) = 0 (26)

(−XC − CX)+ (YC − CY) = 0 (27)
2
3 Tr(CA)+ Tr(X2)− 1

3 Tr(Y 2)+ 2t2 = µ (28)

−(CA− AC)+ 2(XY + YX)+ 4tX = 0 (29)

CA+ AC − 2
3 Tr(CA)idV − 4(Y 2− 1

3 Tr(Y 2)idV )− 2(YX −XY)+ 4tY = 0 (30)

Tr(XA) = p. (31)

At = −A, Ct = −C, Xt = −X, Y t = Y , Tr(Y ) = 0, T =: t idV .
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